From a564e927aefe19f8fac7ff953c7a96ebb5fca65c Mon Sep 17 00:00:00 2001 From: "waldemar%netscape.com" Date: Thu, 16 Sep 1999 07:16:33 +0000 Subject: [PATCH] Added number formatting routines required by ECMA. Fixed several long-standing floating-point reading and writing bugs. Upgraded to latest version of David Gay's floating-point code to fix one of these bugs. Added many comments there. git-svn-id: svn://10.0.0.236/trunk@47756 18797224-902f-48f8-a5cc-f745e15eee43 --- mozilla/js/src/jsdtoa.c | 4417 ++++++++++++++++++++------------------- mozilla/js/src/jsdtoa.h | 56 +- mozilla/js/src/jsnum.c | 163 +- 3 files changed, 2460 insertions(+), 2176 deletions(-) diff --git a/mozilla/js/src/jsdtoa.c b/mozilla/js/src/jsdtoa.c index f2e1dd1edb1..858cc364421 100644 --- a/mozilla/js/src/jsdtoa.c +++ b/mozilla/js/src/jsdtoa.c @@ -20,6 +20,7 @@ * Portable double to alphanumeric string and back converters. */ #include "jsstddef.h" +#include "jslibmath.h" #include "jstypes.h" #include "jsdtoa.h" #include "jsprf.h" @@ -33,7 +34,7 @@ * * The author of this software is David M. Gay. * - * Copyright (c) 1991 by AT&T. + * Copyright (c) 1991 by Lucent Technologies. * * Permission to use, copy, modify, and distribute this software for any * purpose without fee is hereby granted, provided that this entire notice @@ -42,22 +43,33 @@ * documentation for such software. * * THIS SOFTWARE IS BEING PROVIDED "AS IS", WITHOUT ANY EXPRESS OR IMPLIED - * WARRANTY. IN PARTICULAR, NEITHER THE AUTHOR NOR AT&T MAKES ANY + * WARRANTY. IN PARTICULAR, NEITHER THE AUTHOR NOR LUCENT MAKES ANY * REPRESENTATION OR WARRANTY OF ANY KIND CONCERNING THE MERCHANTABILITY * OF THIS SOFTWARE OR ITS FITNESS FOR ANY PARTICULAR PURPOSE. * ***************************************************************/ /* Please send bug reports to - David M. Gay - AT&T Bell Laboratories, Room 2C-463 - 600 Mountain Avenue - Murray Hill, NJ 07974-2070 - U.S.A. - dmg@research.att.com or research!dmg + David M. Gay + Bell Laboratories, Room 2C-463 + 600 Mountain Avenue + Murray Hill, NJ 07974-0636 + U.S.A. + dmg@bell-labs.com */ -/* strtod for IEEE-, VAX-, and IBM-arithmetic machines. +/* On a machine with IEEE extended-precision registers, it is + * necessary to specify double-precision (53-bit) rounding precision + * before invoking strtod or dtoa. If the machine uses (the equivalent + * of) Intel 80x87 arithmetic, the call + * _control87(PC_53, MCW_PC); + * does this with many compilers. Whether this or another call is + * appropriate depends on the compiler; for this to work, it may be + * necessary to #include "float.h" or another system-dependent header + * file. + */ + +/* strtod for IEEE-arithmetic machines. * * This strtod returns a nearest machine number to the input decimal * string (or sets errno to ERANGE). With IEEE arithmetic, ties are @@ -69,55 +81,76 @@ * * Modifications: * - * 1. We only require IEEE, IBM, or VAX double-precision - * arithmetic (not IEEE double-extended). - * 2. We get by with floating-point arithmetic in a case that - * Clinger missed -- when we're computing d * 10^n - * for a small integer d and the integer n is not too - * much larger than 22 (the maximum integer k for which - * we can represent 10^k exactly), we may be able to - * compute (d*10^k) * 10^(e-k) with just one roundoff. - * 3. Rather than a bit-at-a-time adjustment of the binary - * result in the hard case, we use floating-point - * arithmetic to determine the adjustment to within - * one bit; only in really hard cases do we need to - * compute a second residual. - * 4. Because of 3., we don't need a large table of powers of 10 - * for ten-to-e (just some small tables, e.g. of 10^k - * for 0 <= k <= 22). + * 1. We only require IEEE double-precision + * arithmetic (not IEEE double-extended). + * 2. We get by with floating-point arithmetic in a case that + * Clinger missed -- when we're computing d * 10^n + * for a small integer d and the integer n is not too + * much larger than 22 (the maximum integer k for which + * we can represent 10^k exactly), we may be able to + * compute (d*10^k) * 10^(e-k) with just one roundoff. + * 3. Rather than a bit-at-a-time adjustment of the binary + * result in the hard case, we use floating-point + * arithmetic to determine the adjustment to within + * one bit; only in really hard cases do we need to + * compute a second residual. + * 4. Because of 3., we don't need a large table of powers of 10 + * for ten-to-e (just some small tables, e.g. of 10^k + * for 0 <= k <= 22). */ /* * #define IEEE_8087 for IEEE-arithmetic machines where the least - * significant byte has the lowest address. + * significant byte has the lowest address. * #define IEEE_MC68k for IEEE-arithmetic machines where the most - * significant byte has the lowest address. + * significant byte has the lowest address. * #define Long int on machines with 32-bit ints and 64-bit longs. * #define Sudden_Underflow for IEEE-format machines without gradual - * underflow (i.e., that flush to zero on underflow). - * #define IBM for IBM mainframe-style floating-point arithmetic. - * #define VAX for VAX-style floating-point arithmetic. - * #define Unsigned_Shifts if >> does treats its left operand as unsigned. + * underflow (i.e., that flush to zero on underflow). * #define No_leftright to omit left-right logic in fast floating-point - * computation of JS_dtoa. + * computation of JS_dtoa. * #define Check_FLT_ROUNDS if FLT_ROUNDS can assume the values 2 or 3. * #define RND_PRODQUOT to use rnd_prod and rnd_quot (assembly routines - * that use extended-precision instructions to compute rounded - * products and quotients) with IBM. + * that use extended-precision instructions to compute rounded + * products and quotients) with IBM. * #define ROUND_BIASED for IEEE-format with biased rounding. * #define Inaccurate_Divide for IEEE-format with correctly rounded - * products but inaccurate quotients, e.g., for Intel i860. - * #define Just_16 to store 16 bits per 32-bit Long when doing high-precision - * integer arithmetic. Whether this speeds things up or slows things - * down depends on the machine and the number being converted. - * #define KR_headers for old-style C function headers. + * products but inaccurate quotients, e.g., for Intel i860. + * #define JS_HAVE_LONG_LONG on machines that have a "long long" + * integer type (of >= 64 bits). If long long is available and the name is + * something other than "long long", #define Llong to be the name, + * and if "unsigned Llong" does not work as an unsigned version of + * Llong, #define #ULLong to be the corresponding unsigned type. * #define Bad_float_h if your system lacks a float.h or if it does not - * define some or all of DBL_DIG, DBL_MAX_10_EXP, DBL_MAX_EXP, - * FLT_RADIX, FLT_ROUNDS, and DBL_MAX. + * define some or all of DBL_DIG, DBL_MAX_10_EXP, DBL_MAX_EXP, + * FLT_RADIX, FLT_ROUNDS, and DBL_MAX. * #define MALLOC your_malloc, where your_malloc(n) acts like malloc(n) - * if memory is available and otherwise does something you deem - * appropriate. If MALLOC is undefined, malloc will be invoked - * directly -- and assumed always to succeed. + * if memory is available and otherwise does something you deem + * appropriate. If MALLOC is undefined, malloc will be invoked + * directly -- and assumed always to succeed. + * #define Omit_Private_Memory to omit logic (added Jan. 1998) for making + * memory allocations from a private pool of memory when possible. + * When used, the private pool is PRIVATE_MEM bytes long: 2000 bytes, + * unless #defined to be a different length. This default length + * suffices to get rid of MALLOC calls except for unusual cases, + * such as decimal-to-binary conversion of a very long string of + * digits. + * #define INFNAN_CHECK on IEEE systems to cause strtod to check for + * Infinity and NaN (case insensitively). On some systems (e.g., + * some HP systems), it may be necessary to #define NAN_WORD0 + * appropriately -- to the most significant word of a quiet NaN. + * (On HP Series 700/800 machines, -DNAN_WORD0=0x7ff40000 works.) + * #define MULTIPLE_THREADS if the system offers preemptively scheduled + * multiple threads. In this case, you must provide (or suitably + * #define) two locks, acquired by ACQUIRE_DTOA_LOCK(n) and freed + * by FREE_DTOA_LOCK(n) for n = 0 or 1. (The second lock, accessed + * in pow5mult, ensures lazy evaluation of only one copy of high + * powers of 5; omitting this lock would introduce a small + * probability of wasting memory, but would otherwise be harmless.) + * You must also invoke freedtoa(s) to free the value s returned by + * dtoa. You may do so whether or not MULTIPLE_THREADS is #defined. + * #define NO_IEEE_Scale to disable new (Feb. 1997) logic in strtod that + * avoids underflows on inputs whose result does not underflow. */ #ifdef IS_LITTLE_ENDIAN #define IEEE_8087 @@ -133,12 +166,7 @@ #define ULong uint32 #endif -#ifdef DEBUG_rrj -#include "stdio.h" -#define Bug(x) {fprintf(stderr, "%s\n", x); exit(1);} -#else -#define Bug(x) (void)0 -#endif +#define Bug(errorMessageString) JS_ASSERT(!errorMessageString) #include "stdlib.h" #include "string.h" @@ -149,49 +177,37 @@ extern void *MALLOC(size_t); #define MALLOC malloc #endif +#define Omit_Private_Memory +/* Private memory currently doesn't work with JS_THREADSAFE */ +#ifndef Omit_Private_Memory +#ifndef PRIVATE_MEM +#define PRIVATE_MEM 2000 +#endif +#define PRIVATE_mem ((PRIVATE_MEM+sizeof(double)-1)/sizeof(double)) +static double private_mem[PRIVATE_mem], *pmem_next = private_mem; +#endif + #include "errno.h" #ifdef Bad_float_h #undef __STDC__ -#ifdef IEEE_MC68k -#define IEEE_ARITHMETIC -#endif -#ifdef IEEE_8087 -#define IEEE_ARITHMETIC -#endif -#ifdef IEEE_ARITHMETIC #define DBL_DIG 15 #define DBL_MAX_10_EXP 308 #define DBL_MAX_EXP 1024 #define FLT_RADIX 2 #define FLT_ROUNDS 1 #define DBL_MAX 1.7976931348623157e+308 -#endif -#ifdef IBM -#define DBL_DIG 16 -#define DBL_MAX_10_EXP 75 -#define DBL_MAX_EXP 63 -#define FLT_RADIX 16 -#define FLT_ROUNDS 0 -#define DBL_MAX 7.2370055773322621e+75 -#endif -#ifdef VAX -#define DBL_DIG 16 -#define DBL_MAX_10_EXP 38 -#define DBL_MAX_EXP 127 -#define FLT_RADIX 2 -#define FLT_ROUNDS 1 -#define DBL_MAX 1.7014118346046923e+38 -#endif #ifndef LONG_MAX #define LONG_MAX 2147483647 #endif -#else + +#else /* ifndef Bad_float_h */ #include "float.h" -#endif +#endif /* Bad_float_h */ + #ifndef __MATH_H__ #include "math.h" #endif @@ -200,14 +216,8 @@ extern void *MALLOC(size_t); #define CONST const #endif -#ifdef Unsigned_Shifts -#define Sign_Extend(a,b) if (b < 0) a |= 0xffff0000; -#else -#define Sign_Extend(a,b) /*no-op*/ -#endif - -#if defined(IEEE_8087) + defined(IEEE_MC68k) + defined(VAX) + defined(IBM) != 1 -Exactly one of IEEE_8087, IEEE_MC68k, VAX, or IBM should be defined. +#if defined(IEEE_8087) + defined(IEEE_MC68k) != 1 +Exactly one of IEEE_8087 or IEEE_MC68k should be defined. #endif /* Stefan Hanske reports: @@ -227,7 +237,7 @@ Exactly one of IEEE_8087, IEEE_MC68k, VAX, or IBM should be defined. * An alternative that might be better on some machines is * #define Storeinc(a,b,c) (*a++ = b << 16 | c & 0xffff) */ -#if defined(IEEE_8087) + defined(VAX) +#if defined(IEEE_8087) #define Storeinc(a,b,c) (((unsigned short *)a)[1] = (unsigned short)b, \ ((unsigned short *)a)[0] = (unsigned short)c, a++) #else @@ -241,7 +251,6 @@ Exactly one of IEEE_8087, IEEE_MC68k, VAX, or IBM should be defined. /* Quick_max = floor((P-1)*log(FLT_RADIX)/log(10) - 1) */ /* Int_max = floor(P*log(FLT_RADIX)/log(10) - 1) */ -#if defined(IEEE_8087) + defined(IEEE_MC68k) #define Exp_shift 20 #define Exp_shift1 20 #define Exp_msk1 0x100000 @@ -249,7 +258,6 @@ Exactly one of IEEE_8087, IEEE_MC68k, VAX, or IBM should be defined. #define Exp_mask 0x7ff00000 #define P 53 #define Bias 1023 -#define IEEE_Arith #define Emin (-1022) #define Exp_1 0x3ff00000 #define Exp_11 0x3ff00000 @@ -268,63 +276,11 @@ Exactly one of IEEE_8087, IEEE_MC68k, VAX, or IBM should be defined. #define Quick_max 14 #define Int_max 14 #define Infinite(x) (word0(x) == 0x7ff00000) /* sufficient test for here */ -#else -#undef Sudden_Underflow -#define Sudden_Underflow -#ifdef IBM -#define Exp_shift 24 -#define Exp_shift1 24 -#define Exp_msk1 0x1000000 -#define Exp_msk11 0x1000000 -#define Exp_mask 0x7f000000 -#define P 14 -#define Bias 65 -#define Exp_1 0x41000000 -#define Exp_11 0x41000000 -#define Ebits 8 /* exponent has 7 bits, but 8 is the right value in b2d */ -#define Frac_mask 0xffffff -#define Frac_mask1 0xffffff -#define Bletch 4 -#define Ten_pmax 22 -#define Bndry_mask 0xefffff -#define Bndry_mask1 0xffffff -#define LSB 1 -#define Sign_bit 0x80000000 -#define Log2P 4 -#define Tiny0 0x100000 -#define Tiny1 0 -#define Quick_max 14 -#define Int_max 15 -#else /* VAX */ -#define Exp_shift 23 -#define Exp_shift1 7 -#define Exp_msk1 0x80 -#define Exp_msk11 0x800000 -#define Exp_mask 0x7f80 -#define P 56 -#define Bias 129 -#define Exp_1 0x40800000 -#define Exp_11 0x4080 -#define Ebits 8 -#define Frac_mask 0x7fffff -#define Frac_mask1 0xffff007f -#define Ten_pmax 24 -#define Bletch 2 -#define Bndry_mask 0xffff007f -#define Bndry_mask1 0xffff007f -#define LSB 0x10000 -#define Sign_bit 0x8000 -#define Log2P 1 -#define Tiny0 0x80 -#define Tiny1 0 -#define Quick_max 15 -#define Int_max 15 -#endif +#ifndef NO_IEEE_Scale +#define Avoid_Underflow #endif -#ifndef IEEE_Arith -#define ROUND_BIASED -#endif + #ifdef RND_PRODQUOT #define rounded_product(a,b) a = rnd_prod(a, b) @@ -338,307 +294,333 @@ extern double rnd_prod(double, double), rnd_quot(double, double); #define Big0 (Frac_mask1 | Exp_msk1*(DBL_MAX_EXP+Bias-1)) #define Big1 0xffffffff -#ifndef Just_16 -/* When Pack_32 is not defined, we store 16 bits per 32-bit Long. - * This makes some inner loops simpler and sometimes saves work - * during multiplications, but it often seems to make things slightly - * slower. Hence the default is now to store 32 bits per Long. - */ -#ifndef Pack_32 -#define Pack_32 +#ifndef JS_HAVE_LONG_LONG +#undef ULLong +#else /* long long available */ +#ifndef Llong +#define Llong JSInt64 #endif +#ifndef ULLong +#define ULLong JSUint64 +#endif +#endif /* JS_HAVE_LONG_LONG */ + +#ifdef JS_THREADSAFE +#define MULTIPLE_THREADS +static PRLock *freelist_lock; +#define ACQUIRE_DTOA_LOCK(n) PR_Lock(freelist_lock) +#define FREE_DTOA_LOCK(n) PR_Unlock(freelist_lock) +#else +#undef MULTIPLE_THREADS +#define ACQUIRE_DTOA_LOCK(n) /*nothing*/ +#define FREE_DTOA_LOCK(n) /*nothing*/ #endif #define Kmax 15 struct Bigint { - struct Bigint *next; - int32 k, maxwds, sign, wds; - ULong x[1]; + struct Bigint *next; /* Free list link */ + int32 k; /* lg2(maxwds) */ + int32 maxwds; /* Number of words allocated for x */ + int32 sign; /* Zero if positive, 1 if negative. Ignored by most Bigint routines! */ + int32 wds; /* Actual number of words. If value is nonzero, the most significant word must be nonzero. */ + ULong x[1]; /* wds words of number in little endian order */ }; typedef struct Bigint Bigint; static Bigint *freelist[Kmax+1]; -#ifdef JS_THREADSAFE -static PRLock *freelist_lock; -#endif - +/* Allocate a Bigint with 2^k words. */ static Bigint *Balloc(int32 k) { - int32 x; - Bigint *rv; + int32 x; + Bigint *rv; +#ifndef Omit_Private_Memory + uint32 len; +#endif -#ifdef JS_THREADSAFE - PR_Lock(freelist_lock); + ACQUIRE_DTOA_LOCK(0); + if ((rv = freelist[k]) != NULL) + freelist[k] = rv->next; + FREE_DTOA_LOCK(0); + if (rv == NULL) { + x = 1 << k; +#ifdef Omit_Private_Memory + rv = (Bigint *)MALLOC(sizeof(Bigint) + (x-1)*sizeof(ULong)); +#else + len = (sizeof(Bigint) + (x-1)*sizeof(ULong) + sizeof(double) - 1) + /sizeof(double); + if (pmem_next - private_mem + len <= PRIVATE_mem) { + rv = (Bigint*)pmem_next; + pmem_next += len; + } + else + rv = (Bigint*)MALLOC(len*sizeof(double)); #endif - if ((rv = freelist[k]) != NULL) { - freelist[k] = rv->next; - } -#ifdef JS_THREADSAFE - PR_Unlock(freelist_lock); -#endif - if (rv == NULL) { - x = 1 << k; - rv = (Bigint *)MALLOC(sizeof(Bigint) + (x-1)*sizeof(Long)); - rv->k = k; - rv->maxwds = x; - } - rv->sign = rv->wds = 0; - return rv; + rv->k = k; + rv->maxwds = x; + } + rv->sign = rv->wds = 0; + return rv; } -static void Bfree (Bigint *v) +static void Bfree(Bigint *v) { - if (v) { -#ifdef JS_THREADSAFE - PR_Lock(freelist_lock); -#endif - v->next = freelist[v->k]; - freelist[v->k] = v; -#ifdef JS_THREADSAFE - PR_Unlock(freelist_lock); -#endif - } + if (v) { + ACQUIRE_DTOA_LOCK(0); + v->next = freelist[v->k]; + freelist[v->k] = v; + FREE_DTOA_LOCK(0); + } } #define Bcopy(x,y) memcpy((char *)&x->sign, (char *)&y->sign, \ - y->wds*sizeof(Long) + 2*sizeof(int32)) + y->wds*sizeof(Long) + 2*sizeof(int32)) -static Bigint *multadd(Bigint *b, int32 m, int32 a) /* multiply by m and add a */ +/* Return b*m + a. Deallocate the old b. Both a and m must be between 0 and 65535 inclusive. */ +static Bigint *multadd(Bigint *b, int32 m, int32 a) { - int32 i, wds; - ULong *x, y; -#ifdef Pack_32 - ULong xi, z; -#endif - Bigint *b1; - - wds = b->wds; - x = b->x; - i = 0; - do { -#ifdef Pack_32 - xi = *x; - y = (xi & 0xffff) * m + a; - z = (xi >> 16) * m + (y >> 16); - a = (int32)(z >> 16); - *x++ = (z << 16) + (y & 0xffff); + int32 i, wds; +#ifdef ULLong + ULong *x; + ULLong carry, y; #else - y = *x * m + a; - a = (int32)(y >> 16); - *x++ = y & 0xffff; + ULong carry, *x, y; + ULong xi, z; #endif - } - while(++i < wds); - if (a) { - if (wds >= b->maxwds) { - b1 = Balloc(b->k+1); - Bcopy(b1, b); - Bfree(b); - b = b1; - } - b->x[wds++] = a; - b->wds = wds; - } - return b; + Bigint *b1; + + wds = b->wds; + x = b->x; + i = 0; + carry = a; + do { +#ifdef ULLong + y = *x * (ULLong)m + carry; + carry = y >> 32; + *x++ = (ULong)(y & 0xffffffffUL); +#else + xi = *x; + y = (xi & 0xffff) * m + carry; + z = (xi >> 16) * m + (y >> 16); + carry = z >> 16; + *x++ = (z << 16) + (y & 0xffff); +#endif + } + while(++i < wds); + if (carry) { + if (wds >= b->maxwds) { + b1 = Balloc(b->k+1); + Bcopy(b1, b); + Bfree(b); + b = b1; + } + b->x[wds++] = (ULong)carry; + b->wds = wds; + } + return b; } static Bigint *s2b(CONST char *s, int32 nd0, int32 nd, ULong y9) { - Bigint *b; - int32 i, k; - Long x, y; + Bigint *b; + int32 i, k; + Long x, y; - x = (nd + 8) / 9; - for(k = 0, y = 1; x > y; y <<= 1, k++) ; -#ifdef Pack_32 - b = Balloc(k); - b->x[0] = y9; - b->wds = 1; -#else - b = Balloc(k+1); - b->x[0] = y9 & 0xffff; - b->wds = (b->x[1] = y9 >> 16) ? 2 : 1; -#endif + x = (nd + 8) / 9; + for(k = 0, y = 1; x > y; y <<= 1, k++) ; + b = Balloc(k); + b->x[0] = y9; + b->wds = 1; - i = 9; - if (9 < nd0) { - s += 9; - do b = multadd(b, 10, *s++ - '0'); - while(++i < nd0); - s++; - } - else - s += 10; - for(; i < nd; i++) - b = multadd(b, 10, *s++ - '0'); - return b; + i = 9; + if (9 < nd0) { + s += 9; + do b = multadd(b, 10, *s++ - '0'); + while(++i < nd0); + s++; + } + else + s += 10; + for(; i < nd; i++) + b = multadd(b, 10, *s++ - '0'); + return b; } + +/* Return the number (0 through 32) of most significant zero bits in x. */ static int32 hi0bits(register ULong x) { - register int32 k = 0; + register int32 k = 0; - if (!(x & 0xffff0000)) { - k = 16; - x <<= 16; - } - if (!(x & 0xff000000)) { - k += 8; - x <<= 8; - } - if (!(x & 0xf0000000)) { - k += 4; - x <<= 4; - } - if (!(x & 0xc0000000)) { - k += 2; - x <<= 2; - } - if (!(x & 0x80000000)) { - k++; - if (!(x & 0x40000000)) - return 32; - } - return k; + if (!(x & 0xffff0000)) { + k = 16; + x <<= 16; + } + if (!(x & 0xff000000)) { + k += 8; + x <<= 8; + } + if (!(x & 0xf0000000)) { + k += 4; + x <<= 4; + } + if (!(x & 0xc0000000)) { + k += 2; + x <<= 2; + } + if (!(x & 0x80000000)) { + k++; + if (!(x & 0x40000000)) + return 32; + } + return k; } + +/* Return the number (0 through 32) of least significant zero bits in y. + * Also shift y to the right past these 0 through 32 zeros so that y's + * least significant bit will be set unless y was originally zero. */ static int32 lo0bits(ULong *y) { - register int32 k; - register ULong x = *y; + register int32 k; + register ULong x = *y; - if (x & 7) { - if (x & 1) - return 0; - if (x & 2) { - *y = x >> 1; - return 1; - } - *y = x >> 2; - return 2; - } - k = 0; - if (!(x & 0xffff)) { - k = 16; - x >>= 16; - } - if (!(x & 0xff)) { - k += 8; - x >>= 8; - } - if (!(x & 0xf)) { - k += 4; - x >>= 4; - } - if (!(x & 0x3)) { - k += 2; - x >>= 2; - } - if (!(x & 1)) { - k++; - x >>= 1; - if (!x & 1) - return 32; - } - *y = x; - return k; + if (x & 7) { + if (x & 1) + return 0; + if (x & 2) { + *y = x >> 1; + return 1; + } + *y = x >> 2; + return 2; + } + k = 0; + if (!(x & 0xffff)) { + k = 16; + x >>= 16; + } + if (!(x & 0xff)) { + k += 8; + x >>= 8; + } + if (!(x & 0xf)) { + k += 4; + x >>= 4; + } + if (!(x & 0x3)) { + k += 2; + x >>= 2; + } + if (!(x & 1)) { + k++; + x >>= 1; + if (!x & 1) + return 32; + } + *y = x; + return k; } +/* Return a new Bigint with the given integer value, which must be nonnegative. */ static Bigint *i2b(int32 i) { - Bigint *b; + Bigint *b; - b = Balloc(1); - b->x[0] = i; - b->wds = 1; - return b; + b = Balloc(1); + b->x[0] = i; + b->wds = 1; + return b; } +/* Return a newly allocated product of a and b. */ static Bigint *mult(CONST Bigint *a, CONST Bigint *b) { - CONST Bigint *t; - Bigint *c; - int32 k, wa, wb, wc; - ULong carry, y, z; - ULong *xc, *xc0, *xce; - CONST ULong *x, *xa, *xae, *xb, *xbe; -#ifdef Pack_32 - ULong z2; + CONST Bigint *t; + Bigint *c; + int32 k, wa, wb, wc; + ULong y; + ULong *xc, *xc0, *xce; + CONST ULong *x, *xa, *xae, *xb, *xbe; +#ifdef ULLong + ULLong carry, z; +#else + ULong carry, z; + ULong z2; #endif - if (a->wds < b->wds) { - t = a; - a = b; - b = t; - } - k = a->k; - wa = a->wds; - wb = b->wds; - wc = wa + wb; - if (wc > a->maxwds) - k++; - c = Balloc(k); - for(xc = c->x, xce = xc + wc; xc < xce; xc++) - *xc = 0; - xa = a->x; - xae = xa + wa; - xb = b->x; - xbe = xb + wb; - xc0 = c->x; -#ifdef Pack_32 - for(; xb < xbe; xb++, xc0++) { - if ((y = *xb & 0xffff) != 0) { - x = xa; - xc = xc0; - carry = 0; - do { - z = (*x & 0xffff) * y + (*xc & 0xffff) + carry; - carry = z >> 16; - z2 = (*x++ >> 16) * y + (*xc >> 16) + carry; - carry = z2 >> 16; - Storeinc(xc, z2, z); - } - while(x < xae); - *xc = carry; - } - if ((y = *xb >> 16) != 0) { - x = xa; - xc = xc0; - carry = 0; - z2 = *xc; - do { - z = (*x & 0xffff) * y + (*xc >> 16) + carry; - carry = z >> 16; - Storeinc(xc, z, z2); - z2 = (*x++ >> 16) * y + (*xc & 0xffff) + carry; - carry = z2 >> 16; - } - while(x < xae); - *xc = z2; - } - } + if (a->wds < b->wds) { + t = a; + a = b; + b = t; + } + k = a->k; + wa = a->wds; + wb = b->wds; + wc = wa + wb; + if (wc > a->maxwds) + k++; + c = Balloc(k); + for(xc = c->x, xce = xc + wc; xc < xce; xc++) + *xc = 0; + xa = a->x; + xae = xa + wa; + xb = b->x; + xbe = xb + wb; + xc0 = c->x; +#ifdef ULLong + for(; xb < xbe; xc0++) { + if ((y = *xb++) != 0) { + x = xa; + xc = xc0; + carry = 0; + do { + z = *x++ * (ULLong)y + *xc + carry; + carry = z >> 32; + *xc++ = (ULong)(z & 0xffffffffUL); + } + while(x < xae); + *xc = (ULong)carry; + } + } #else - for(; xb < xbe; xc0++) { - if (y = *xb++) { - x = xa; - xc = xc0; - carry = 0; - do { - z = *x++ * y + *xc + carry; - carry = z >> 16; - *xc++ = z & 0xffff; - } - while(x < xae); - *xc = carry; - } - } + for(; xb < xbe; xb++, xc0++) { + if ((y = *xb & 0xffff) != 0) { + x = xa; + xc = xc0; + carry = 0; + do { + z = (*x & 0xffff) * y + (*xc & 0xffff) + carry; + carry = z >> 16; + z2 = (*x++ >> 16) * y + (*xc >> 16) + carry; + carry = z2 >> 16; + Storeinc(xc, z2, z); + } + while(x < xae); + *xc = carry; + } + if ((y = *xb >> 16) != 0) { + x = xa; + xc = xc0; + carry = 0; + z2 = *xc; + do { + z = (*x & 0xffff) * y + (*xc >> 16) + carry; + carry = z >> 16; + Storeinc(xc, z, z2); + z2 = (*x++ >> 16) * y + (*xc & 0xffff) + carry; + carry = z2 >> 16; + } + while(x < xae); + *xc = z2; + } + } #endif - for(xc0 = c->x, xc = xc0 + wc; wc > 0 && !*--xc; --wc) ; - c->wds = wc; - return c; + for(xc0 = c->x, xc = xc0 + wc; wc > 0 && !*--xc; --wc) ; + c->wds = wc; + return c; } /* @@ -657,546 +639,420 @@ static Bigint *p5s; static PRLock *p5s_lock; #endif +/* Return b * 5^k. Deallocate the old b. k must be nonnegative. */ static Bigint *pow5mult(Bigint *b, int32 k) { - Bigint *b1, *p5, *p51; - int32 i; - static CONST int32 p05[3] = { 5, 25, 125 }; + Bigint *b1, *p5, *p51; + int32 i; + static CONST int32 p05[3] = { 5, 25, 125 }; - if ((i = k & 3) != 0) - b = multadd(b, p05[i-1], 0); + if ((i = k & 3) != 0) + b = multadd(b, p05[i-1], 0); - if (!(k >>= 2)) - return b; - if (!(p5 = p5s)) { + if (!(k >>= 2)) + return b; + if (!(p5 = p5s)) { #ifdef JS_THREADSAFE - /* - * We take great care to not call i2b() and Bfree() - * while holding the lock. - */ - Bigint *wasted_effort = NULL; - p5 = i2b(625); - /* lock and check again */ - PR_Lock(p5s_lock); - if (!p5s) { - /* first time */ - p5s = p5; - p5->next = 0; - } else { - /* some other thread just beat us */ - wasted_effort = p5; - p5 = p5s; - } - PR_Unlock(p5s_lock); - if (wasted_effort) { - Bfree(wasted_effort); - } + /* + * We take great care to not call i2b() and Bfree() + * while holding the lock. + */ + Bigint *wasted_effort = NULL; + p5 = i2b(625); + /* lock and check again */ + PR_Lock(p5s_lock); + if (!p5s) { + /* first time */ + p5s = p5; + p5->next = 0; + } else { + /* some other thread just beat us */ + wasted_effort = p5; + p5 = p5s; + } + PR_Unlock(p5s_lock); + if (wasted_effort) { + Bfree(wasted_effort); + } #else - /* first time */ - p5 = p5s = i2b(625); - p5->next = 0; + /* first time */ + p5 = p5s = i2b(625); + p5->next = 0; #endif - } - for(;;) { - if (k & 1) { - b1 = mult(b, p5); - Bfree(b); - b = b1; - } - if (!(k >>= 1)) - break; - if (!(p51 = p5->next)) { + } + for(;;) { + if (k & 1) { + b1 = mult(b, p5); + Bfree(b); + b = b1; + } + if (!(k >>= 1)) + break; + if (!(p51 = p5->next)) { #ifdef JS_THREADSAFE - Bigint *wasted_effort = NULL; - p51 = mult(p5, p5); - PR_Lock(p5s_lock); - if (!p5->next) { - p5->next = p51; - p51->next = 0; - } else { - wasted_effort = p51; - p51 = p5->next; - } - PR_Unlock(p5s_lock); - if (wasted_effort) { - Bfree(wasted_effort); - } + Bigint *wasted_effort = NULL; + p51 = mult(p5, p5); + PR_Lock(p5s_lock); + if (!p5->next) { + p5->next = p51; + p51->next = 0; + } else { + wasted_effort = p51; + p51 = p5->next; + } + PR_Unlock(p5s_lock); + if (wasted_effort) { + Bfree(wasted_effort); + } #else - p51 = p5->next = mult(p5,p5); - p51->next = 0; + p51 = p5->next = mult(p5,p5); + p51->next = 0; #endif - } - p5 = p51; - } - return b; + } + p5 = p51; + } + return b; } +/* Return b * 2^k. Deallocate the old b. k must be nonnegative. */ static Bigint *lshift(Bigint *b, int32 k) { - int32 i, k1, n, n1; - Bigint *b1; - ULong *x, *x1, *xe, z; + int32 i, k1, n, n1; + Bigint *b1; + ULong *x, *x1, *xe, z; -#ifdef Pack_32 - n = k >> 5; -#else - n = k >> 4; -#endif - k1 = b->k; - n1 = n + b->wds + 1; - for(i = b->maxwds; n1 > i; i <<= 1) - k1++; - b1 = Balloc(k1); - x1 = b1->x; - for(i = 0; i < n; i++) - *x1++ = 0; - x = b->x; - xe = x + b->wds; -#ifdef Pack_32 - if (k &= 0x1f) { - k1 = 32 - k; - z = 0; - do { - *x1++ = *x << k | z; - z = *x++ >> k1; - } - while(x < xe); - if ((*x1 = z) != 0) - ++n1; - } -#else - if (k &= 0xf) { - k1 = 16 - k; - z = 0; - do { - *x1++ = *x << k & 0xffff | z; - z = *x++ >> k1; - } - while(x < xe); - if ((*x1 = z) != 0) - ++n1; - } -#endif - else do - *x1++ = *x++; - while(x < xe); - b1->wds = n1 - 1; - Bfree(b); - return b1; + n = k >> 5; + k1 = b->k; + n1 = n + b->wds + 1; + for(i = b->maxwds; n1 > i; i <<= 1) + k1++; + b1 = Balloc(k1); + x1 = b1->x; + for(i = 0; i < n; i++) + *x1++ = 0; + x = b->x; + xe = x + b->wds; + if (k &= 0x1f) { + k1 = 32 - k; + z = 0; + do { + *x1++ = *x << k | z; + z = *x++ >> k1; + } + while(x < xe); + if ((*x1 = z) != 0) + ++n1; + } + else do + *x1++ = *x++; + while(x < xe); + b1->wds = n1 - 1; + Bfree(b); + return b1; } +/* Return -1, 0, or 1 depending on whether ab, respectively. */ static int32 cmp(Bigint *a, Bigint *b) { - ULong *xa, *xa0, *xb, *xb0; - int32 i, j; + ULong *xa, *xa0, *xb, *xb0; + int32 i, j; - i = a->wds; - j = b->wds; + i = a->wds; + j = b->wds; #ifdef DEBUG - if ((i > 1 && !a->x[i-1])) - Bug("cmp called with a->x[a->wds-1] == 0"); - if ((j > 1 && !b->x[j-1])) - Bug("cmp called with b->x[b->wds-1] == 0"); + if (i > 1 && !a->x[i-1]) + Bug("cmp called with a->x[a->wds-1] == 0"); + if (j > 1 && !b->x[j-1]) + Bug("cmp called with b->x[b->wds-1] == 0"); #endif - if (i -= j) - return i; - xa0 = a->x; - xa = xa0 + j; - xb0 = b->x; - xb = xb0 + j; - for(;;) { - if (*--xa != *--xb) - return *xa < *xb ? -1 : 1; - if (xa <= xa0) - break; - } - return 0; + if (i -= j) + return i; + xa0 = a->x; + xa = xa0 + j; + xb0 = b->x; + xb = xb0 + j; + for(;;) { + if (*--xa != *--xb) + return *xa < *xb ? -1 : 1; + if (xa <= xa0) + break; + } + return 0; } static Bigint *diff(Bigint *a, Bigint *b) { - Bigint *c; - int32 i, wa, wb; - Long borrow, y; /* We need signed shifts here. */ - ULong *xa, *xae, *xb, *xbe, *xc; -#ifdef Pack_32 - Long z; + Bigint *c; + int32 i, wa, wb; + ULong *xa, *xae, *xb, *xbe, *xc; +#ifdef ULLong + ULLong borrow, y; +#else + ULong borrow, y; + ULong z; #endif - i = cmp(a,b); - if (!i) { - c = Balloc(0); - c->wds = 1; - c->x[0] = 0; - return c; - } - if (i < 0) { - c = a; - a = b; - b = c; - i = 1; - } - else - i = 0; - c = Balloc(a->k); - c->sign = i; - wa = a->wds; - xa = a->x; - xae = xa + wa; - wb = b->wds; - xb = b->x; - xbe = xb + wb; - xc = c->x; - borrow = 0; -#ifdef Pack_32 - do { - y = (*xa & 0xffff) - (*xb & 0xffff) + borrow; - borrow = y >> 16; - Sign_Extend(borrow, y); - z = (*xa++ >> 16) - (*xb++ >> 16) + borrow; - borrow = z >> 16; - Sign_Extend(borrow, z); - Storeinc(xc, z, y); - } - while(xb < xbe); - while(xa < xae) { - y = (*xa & 0xffff) + borrow; - borrow = y >> 16; - Sign_Extend(borrow, y); - z = (*xa++ >> 16) + borrow; - borrow = z >> 16; - Sign_Extend(borrow, z); - Storeinc(xc, z, y); - } + i = cmp(a,b); + if (!i) { + c = Balloc(0); + c->wds = 1; + c->x[0] = 0; + return c; + } + if (i < 0) { + c = a; + a = b; + b = c; + i = 1; + } + else + i = 0; + c = Balloc(a->k); + c->sign = i; + wa = a->wds; + xa = a->x; + xae = xa + wa; + wb = b->wds; + xb = b->x; + xbe = xb + wb; + xc = c->x; + borrow = 0; +#ifdef ULLong + do { + y = (ULLong)*xa++ - *xb++ - borrow; + borrow = y >> 32 & 1UL; + *xc++ = (ULong)(y & 0xffffffffUL); + } + while(xb < xbe); + while(xa < xae) { + y = *xa++ - borrow; + borrow = y >> 32 & 1UL; + *xc++ = (ULong)(y & 0xffffffffUL); + } #else - do { - y = *xa++ - *xb++ + borrow; - borrow = y >> 16; - Sign_Extend(borrow, y); - *xc++ = y & 0xffff; - } - while(xb < xbe); - while(xa < xae) { - y = *xa++ + borrow; - borrow = y >> 16; - Sign_Extend(borrow, y); - *xc++ = y & 0xffff; - } + do { + y = (*xa & 0xffff) - (*xb & 0xffff) - borrow; + borrow = (y & 0x10000) >> 16; + z = (*xa++ >> 16) - (*xb++ >> 16) - borrow; + borrow = (z & 0x10000) >> 16; + Storeinc(xc, z, y); + } + while(xb < xbe); + while(xa < xae) { + y = (*xa & 0xffff) - borrow; + borrow = (y & 0x10000) >> 16; + z = (*xa++ >> 16) - borrow; + borrow = (z & 0x10000) >> 16; + Storeinc(xc, z, y); + } #endif - while(!*--xc) - wa--; - c->wds = wa; - return c; + while(!*--xc) + wa--; + c->wds = wa; + return c; } +/* Return the absolute difference between x and the adjacent greater-magnitude double number (ignoring exponent overflows). */ static double ulp(double x) { - register Long L; - double a; + register Long L; + double a; - L = (word0(x) & Exp_mask) - (P-1)*Exp_msk1; + L = (word0(x) & Exp_mask) - (P-1)*Exp_msk1; #ifndef Sudden_Underflow - if (L > 0) { + if (L > 0) { #endif -#ifdef IBM - L |= Exp_msk1 >> 4; -#endif - word0(a) = L; - word1(a) = 0; + word0(a) = L; + word1(a) = 0; #ifndef Sudden_Underflow - } - else { - L = -L >> Exp_shift; - if (L < Exp_shift) { - word0(a) = 0x80000 >> L; - word1(a) = 0; - } - else { - word0(a) = 0; - L -= Exp_shift; - word1(a) = L >= 31 ? 1 : 1 << (31 - L); - } - } + } + else { + L = -L >> Exp_shift; + if (L < Exp_shift) { + word0(a) = 0x80000 >> L; + word1(a) = 0; + } + else { + word0(a) = 0; + L -= Exp_shift; + word1(a) = L >= 31 ? 1 : 1 << (31 - L); + } + } #endif - return a; + return a; } -static double -b2d -#ifdef KR_headers -(a, e) Bigint *a; int32 *e; -#else -(Bigint *a, int32 *e) -#endif + +static double b2d(Bigint *a, int32 *e) { - ULong *xa, *xa0, w, y, z; - int32 k; - double d; -#ifdef VAX - ULong d0, d1; -#else + ULong *xa, *xa0, w, y, z; + int32 k; + double d; #define d0 word0(d) #define d1 word1(d) -#endif - xa0 = a->x; - xa = xa0 + a->wds; - y = *--xa; + xa0 = a->x; + xa = xa0 + a->wds; + y = *--xa; #ifdef DEBUG - if (!y) Bug("zero y in b2d"); + if (!y) Bug("zero y in b2d"); #endif - k = hi0bits(y); - *e = 32 - k; -#ifdef Pack_32 - if (k < Ebits) { - d0 = Exp_1 | y >> (Ebits - k); - w = xa > xa0 ? *--xa : 0; - d1 = y << (32-Ebits + k) | w >> (Ebits - k); - goto ret_d; - } - z = xa > xa0 ? *--xa : 0; - if (k -= Ebits) { - d0 = Exp_1 | y << k | z >> (32 - k); - y = xa > xa0 ? *--xa : 0; - d1 = z << k | y >> (32 - k); - } - else { - d0 = Exp_1 | y; - d1 = z; - } -#else - if (k < Ebits + 16) { - z = xa > xa0 ? *--xa : 0; - d0 = Exp_1 | y << k - Ebits | z >> Ebits + 16 - k; - w = xa > xa0 ? *--xa : 0; - y = xa > xa0 ? *--xa : 0; - d1 = z << k + 16 - Ebits | w << k - Ebits | y >> 16 + Ebits - k; - goto ret_d; - } - z = xa > xa0 ? *--xa : 0; - w = xa > xa0 ? *--xa : 0; - k -= Ebits + 16; - d0 = Exp_1 | y << k + 16 | z << k | w >> 16 - k; - y = xa > xa0 ? *--xa : 0; - d1 = w << k + 16 | y << k; -#endif -ret_d: -#ifdef VAX - word0(d) = d0 >> 16 | d0 << 16; - word1(d) = d1 >> 16 | d1 << 16; -#else + k = hi0bits(y); + *e = 32 - k; + if (k < Ebits) { + d0 = Exp_1 | y >> (Ebits - k); + w = xa > xa0 ? *--xa : 0; + d1 = y << (32-Ebits + k) | w >> (Ebits - k); + goto ret_d; + } + z = xa > xa0 ? *--xa : 0; + if (k -= Ebits) { + d0 = Exp_1 | y << k | z >> (32 - k); + y = xa > xa0 ? *--xa : 0; + d1 = z << k | y >> (32 - k); + } + else { + d0 = Exp_1 | y; + d1 = z; + } + ret_d: #undef d0 #undef d1 -#endif - return d; + return d; } -static Bigint * -d2b -#ifdef KR_headers -(d, e, bits) double d; int32 *e, *bits; -#else -(double d, int32 *e, int32 *bits) -#endif + +/* Convert d into the form b*2^e, where b is an odd integer. b is the returned + * Bigint and e is the returned binary exponent. Return the number of significant + * bits in b in bits. d must be finite and nonzero. */ +static Bigint *d2b(double d, int32 *e, int32 *bits) { - Bigint *b; - int32 de, i, k; - ULong *x, y, z; -#ifdef VAX - ULong d0, d1; - d0 = word0(d) >> 16 | word0(d) << 16; - d1 = word1(d) >> 16 | word1(d) << 16; -#else + Bigint *b; + int32 de, i, k; + ULong *x, y, z; #define d0 word0(d) #define d1 word1(d) -#endif -#ifdef Pack_32 - b = Balloc(1); -#else - b = Balloc(2); -#endif - x = b->x; + b = Balloc(1); + x = b->x; - z = d0 & Frac_mask; - d0 &= 0x7fffffff; /* clear sign bit, which we ignore */ + z = d0 & Frac_mask; + d0 &= 0x7fffffff; /* clear sign bit, which we ignore */ #ifdef Sudden_Underflow - de = (int32)(d0 >> Exp_shift); -#ifndef IBM - z |= Exp_msk11; -#endif + de = (int32)(d0 >> Exp_shift); + z |= Exp_msk11; #else - if ((de = (int32)(d0 >> Exp_shift)) != 0) - z |= Exp_msk1; -#endif -#ifdef Pack_32 - if ((y = d1) != 0) { - if ((k = lo0bits(&y)) != 0) { - x[0] = y | z << (32 - k); - z >>= k; - } - else - x[0] = y; - i = b->wds = (x[1] = z) ? 2 : 1; - } - else { -#ifdef DEBUG - if (!z) - Bug("Zero passed to d2b"); -#endif - k = lo0bits(&z); - x[0] = z; - i = b->wds = 1; - k += 32; - } -#else - if ((y = d1) != 0) { - if ((k = lo0bits(&y)) != 0) - if (k >= 16) { - x[0] = y | z << 32 - k & 0xffff; - x[1] = z >> k - 16 & 0xffff; - x[2] = z >> k; - i = 2; - } - else { - x[0] = y & 0xffff; - x[1] = y >> 16 | z << 16 - k & 0xffff; - x[2] = z >> k & 0xffff; - x[3] = z >> k+16; - i = 3; - } - else { - x[0] = y & 0xffff; - x[1] = y >> 16; - x[2] = z & 0xffff; - x[3] = z >> 16; - i = 3; - } - } - else { -#ifdef DEBUG - if (!z) - Bug("Zero passed to d2b"); -#endif - k = lo0bits(&z); - if (k >= 16) { - x[0] = z; - i = 0; - } - else { - x[0] = z & 0xffff; - x[1] = z >> 16; - i = 1; - } - k += 32; - } - while(!x[i]) - --i; - b->wds = i + 1; + if ((de = (int32)(d0 >> Exp_shift)) != 0) + z |= Exp_msk1; #endif + if ((y = d1) != 0) { + if ((k = lo0bits(&y)) != 0) { + x[0] = y | z << (32 - k); + z >>= k; + } + else + x[0] = y; + i = b->wds = (x[1] = z) ? 2 : 1; + } + else { + JS_ASSERT(z); + k = lo0bits(&z); + x[0] = z; + i = b->wds = 1; + k += 32; + } #ifndef Sudden_Underflow - if (de) { -#endif -#ifdef IBM - *e = (de - Bias - (P-1) << 2) + k; - *bits = 4*P + 8 - k - hi0bits(word0(d) & Frac_mask); -#else - *e = de - Bias - (P-1) + k; - *bits = P - k; + if (de) { #endif + *e = de - Bias - (P-1) + k; + *bits = P - k; #ifndef Sudden_Underflow - } - else { - *e = de - Bias - (P-1) + 1 + k; -#ifdef Pack_32 - *bits = 32*i - hi0bits(x[i-1]); -#else - *bits = (i+2)*16 - hi0bits(x[i]); + } + else { + *e = de - Bias - (P-1) + 1 + k; + *bits = 32*i - hi0bits(x[i-1]); + } #endif - } -#endif - return b; + return b; } #undef d0 #undef d1 -static double -ratio -#ifdef KR_headers -(a, b) Bigint *a, *b; -#else -(Bigint *a, Bigint *b) -#endif -{ - double da, db; - int32 k, ka, kb; - da = b2d(a, &ka); - db = b2d(b, &kb); -#ifdef Pack_32 - k = ka - kb + 32*(a->wds - b->wds); -#else - k = ka - kb + 16*(a->wds - b->wds); -#endif -#ifdef IBM - if (k > 0) { - word0(da) += (k >> 2)*Exp_msk1; - if (k &= 3) - da *= 1 << k; - } - else { - k = -k; - word0(db) += (k >> 2)*Exp_msk1; - if (k &= 3) - db *= 1 << k; - } -#else - if (k > 0) - word0(da) += k*Exp_msk1; - else { - k = -k; - word0(db) += k*Exp_msk1; - } -#endif - return da / db; +static double ratio(Bigint *a, Bigint *b) +{ + double da, db; + int32 k, ka, kb; + + da = b2d(a, &ka); + db = b2d(b, &kb); + k = ka - kb + 32*(a->wds - b->wds); + if (k > 0) + word0(da) += k*Exp_msk1; + else { + k = -k; + word0(db) += k*Exp_msk1; + } + return da / db; } static CONST double tens[] = { - 1e0, 1e1, 1e2, 1e3, 1e4, 1e5, 1e6, 1e7, 1e8, 1e9, - 1e10, 1e11, 1e12, 1e13, 1e14, 1e15, 1e16, 1e17, 1e18, 1e19, - 1e20, 1e21, 1e22 -#ifdef VAX - , 1e23, 1e24 -#endif + 1e0, 1e1, 1e2, 1e3, 1e4, 1e5, 1e6, 1e7, 1e8, 1e9, + 1e10, 1e11, 1e12, 1e13, 1e14, 1e15, 1e16, 1e17, 1e18, 1e19, + 1e20, 1e21, 1e22 }; -static CONST double -#ifdef IEEE_Arith -bigtens[] = { 1e16, 1e32, 1e64, 1e128, 1e256 }; -static CONST double tinytens[] = { 1e-16, 1e-32, 1e-64, 1e-128, 1e-256 }; +static CONST double bigtens[] = { 1e16, 1e32, 1e64, 1e128, 1e256 }; +static CONST double tinytens[] = { 1e-16, 1e-32, 1e-64, 1e-128, +#ifdef Avoid_Underflow + 9007199254740992.e-256 +#else + 1e-256 +#endif + }; +/* The factor of 2^53 in tinytens[4] helps us avoid setting the underflow */ +/* flag unnecessarily. It leads to a song and dance at the end of strtod. */ +#define Scale_Bit 0x10 #define n_bigtens 5 -#else -#ifdef IBM -bigtens[] = { 1e16, 1e32, 1e64 }; -static CONST double tinytens[] = { 1e-16, 1e-32, 1e-64 }; -#define n_bigtens 3 -#else -bigtens[] = { 1e16, 1e32 }; -static CONST double tinytens[] = { 1e-16, 1e-32 }; -#define n_bigtens 2 + + +#ifdef INFNAN_CHECK + +#ifndef NAN_WORD0 +#define NAN_WORD0 0x7ff80000 #endif + +#ifndef NAN_WORD1 +#define NAN_WORD1 0 #endif +static int match(CONST char **sp, char *t) +{ + int c, d; + CONST char *s = *sp; + + while(d = *t++) { + if ((c = *++s) >= 'A' && c <= 'Z') + c += 'a' - 'A'; + if (c != d) + return 0; + } + *sp = s + 1; + return 1; + } +#endif /* INFNAN_CHECK */ + + #ifdef JS_THREADSAFE static JSBool initialized = JS_FALSE; /* hacked replica of nspr _PR_InitDtoa */ static void InitDtoa(void) { - freelist_lock = PR_NewLock(); + freelist_lock = PR_NewLock(); p5s_lock = PR_NewLock(); - initialized = JS_TRUE; + initialized = JS_TRUE; } #endif @@ -1206,642 +1062,727 @@ static void InitDtoa(void) JS_FRIEND_API(double) JS_strtod(CONST char *s00, char **se) { - int32 bb2, bb5, bbe, bd2, bd5, bbbits, bs2, c, dsign, - e, e1, esign, i, j, k, nd, nd0, nf, nz, nz0, sign; - CONST char *s, *s0, *s1; - double aadj, aadj1, adj, rv, rv0; - Long L; - ULong y, z; - Bigint *bb, *bb1, *bd, *bd0, *bs, *delta; + int32 scale; + int32 bb2, bb5, bbe, bd2, bd5, bbbits, bs2, c, dsign, + e, e1, esign, i, j, k, nd, nd0, nf, nz, nz0, sign; + CONST char *s, *s0, *s1; + double aadj, aadj1, adj, rv, rv0; + Long L; + ULong y, z; + Bigint *bb, *bb1, *bd, *bd0, *bs, *delta; #ifdef JS_THREADSAFE - if (!initialized) InitDtoa(); + if (!initialized) InitDtoa(); #endif - bb = bd = bs = delta = NULL; - sign = nz0 = nz = 0; - rv = 0.; - for(s = s00;;s++) switch(*s) { - case '-': - sign = 1; - /* no break */ - case '+': - if (*++s) - goto break2; - /* no break */ - case 0: - s = s00; - goto ret; - case '\t': - case '\n': - case '\v': - case '\f': - case '\r': - case ' ': - continue; - default: - goto break2; - } + bb = bd = bs = delta = NULL; + sign = nz0 = nz = 0; + rv = 0.; + for(s = s00;;s++) switch(*s) { + case '-': + sign = 1; + /* no break */ + case '+': + if (*++s) + goto break2; + /* no break */ + case 0: + s = s00; + goto ret; + case '\t': + case '\n': + case '\v': + case '\f': + case '\r': + case ' ': + continue; + default: + goto break2; + } break2: - if (*s == '0') { - nz0 = 1; - while(*++s == '0') ; - if (!*s) - goto ret; - } - s0 = s; - y = z = 0; - for(nd = nf = 0; (c = *s) >= '0' && c <= '9'; nd++, s++) - if (nd < 9) - y = 10*y + c - '0'; - else if (nd < 16) - z = 10*z + c - '0'; - nd0 = nd; - if (c == '.') { - c = *++s; - if (!nd) { - for(; c == '0'; c = *++s) - nz++; - if (c > '0' && c <= '9') { - s0 = s; - nf += nz; - nz = 0; - goto have_dig; - } - goto dig_done; - } - for(; c >= '0' && c <= '9'; c = *++s) { - have_dig: - nz++; - if (c -= '0') { - nf += nz; - for(i = 1; i < nz; i++) - if (nd++ < 9) - y *= 10; - else if (nd <= DBL_DIG + 1) - z *= 10; - if (nd++ < 9) - y = 10*y + c; - else if (nd <= DBL_DIG + 1) - z = 10*z + c; - nz = 0; - } - } - } + if (*s == '0') { + nz0 = 1; + while(*++s == '0') ; + if (!*s) + goto ret; + } + s0 = s; + y = z = 0; + for(nd = nf = 0; (c = *s) >= '0' && c <= '9'; nd++, s++) + if (nd < 9) + y = 10*y + c - '0'; + else if (nd < 16) + z = 10*z + c - '0'; + nd0 = nd; + if (c == '.') { + c = *++s; + if (!nd) { + for(; c == '0'; c = *++s) + nz++; + if (c > '0' && c <= '9') { + s0 = s; + nf += nz; + nz = 0; + goto have_dig; + } + goto dig_done; + } + for(; c >= '0' && c <= '9'; c = *++s) { + have_dig: + nz++; + if (c -= '0') { + nf += nz; + for(i = 1; i < nz; i++) + if (nd++ < 9) + y *= 10; + else if (nd <= DBL_DIG + 1) + z *= 10; + if (nd++ < 9) + y = 10*y + c; + else if (nd <= DBL_DIG + 1) + z = 10*z + c; + nz = 0; + } + } + } dig_done: - e = 0; - if (c == 'e' || c == 'E') { - if (!nd && !nz && !nz0) { - s = s00; - goto ret; - } - s00 = s; - esign = 0; - switch(c = *++s) { - case '-': - esign = 1; - case '+': - c = *++s; - } - if (c >= '0' && c <= '9') { - while(c == '0') - c = *++s; - if (c > '0' && c <= '9') { - L = c - '0'; - s1 = s; - while((c = *++s) >= '0' && c <= '9') - L = 10*L + c - '0'; - if (s - s1 > 8 || L > 19999) - /* Avoid confusion from exponents - * so large that e might overflow. - */ - e = 19999; /* safe for 16 bit ints */ - else - e = (int32)L; - if (esign) - e = -e; - } - else - e = 0; - } - else - s = s00; - } - if (!nd) { - if (!nz && !nz0) - s = s00; - goto ret; - } - e1 = e -= nf; + e = 0; + if (c == 'e' || c == 'E') { + if (!nd && !nz && !nz0) { + s = s00; + goto ret; + } + s00 = s; + esign = 0; + switch(c = *++s) { + case '-': + esign = 1; + case '+': + c = *++s; + } + if (c >= '0' && c <= '9') { + while(c == '0') + c = *++s; + if (c > '0' && c <= '9') { + L = c - '0'; + s1 = s; + while((c = *++s) >= '0' && c <= '9') + L = 10*L + c - '0'; + if (s - s1 > 8 || L > 19999) + /* Avoid confusion from exponents + * so large that e might overflow. + */ + e = 19999; /* safe for 16 bit ints */ + else + e = (int32)L; + if (esign) + e = -e; + } + else + e = 0; + } + else + s = s00; + } + if (!nd) { + if (!nz && !nz0) { +#ifdef INFNAN_CHECK + /* Check for Nan and Infinity */ + switch(c) { + case 'i': + case 'I': + if (match(&s,"nfinity")) { + word0(rv) = 0x7ff00000; + word1(rv) = 0; + goto ret; + } + break; + case 'n': + case 'N': + if (match(&s, "an")) { + word0(rv) = NAN_WORD0; + word1(rv) = NAN_WORD1; + goto ret; + } + } +#endif /* INFNAN_CHECK */ + s = s00; + } + goto ret; + } + e1 = e -= nf; - /* Now we have nd0 digits, starting at s0, followed by a - * decimal point, followed by nd-nd0 digits. The number we're - * after is the integer represented by those digits times - * 10**e */ + /* Now we have nd0 digits, starting at s0, followed by a + * decimal point, followed by nd-nd0 digits. The number we're + * after is the integer represented by those digits times + * 10**e */ - if (!nd0) - nd0 = nd; - k = nd < DBL_DIG + 1 ? nd : DBL_DIG + 1; - rv = y; - if (k > 9) - rv = tens[k - 9] * rv + z; - bd0 = 0; - if (nd <= DBL_DIG + if (!nd0) + nd0 = nd; + k = nd < DBL_DIG + 1 ? nd : DBL_DIG + 1; + rv = y; + if (k > 9) + rv = tens[k - 9] * rv + z; + bd0 = 0; + if (nd <= DBL_DIG #ifndef RND_PRODQUOT - && FLT_ROUNDS == 1 + && FLT_ROUNDS == 1 #endif - ) { - if (!e) - goto ret; - if (e > 0) { - if (e <= Ten_pmax) { -#ifdef VAX - goto vax_ovfl_check; -#else - /* rv = */ rounded_product(rv, tens[e]); - goto ret; -#endif - } - i = DBL_DIG - nd; - if (e <= Ten_pmax + i) { - /* A fancier test would sometimes let us do - * this for larger i values. - */ - e -= i; - rv *= tens[i]; -#ifdef VAX - /* VAX exponent range is so narrow we must - * worry about overflow here... - */ - vax_ovfl_check: - word0(rv) -= P*Exp_msk1; - /* rv = */ rounded_product(rv, tens[e]); - if ((word0(rv) & Exp_mask) - > Exp_msk1*(DBL_MAX_EXP+Bias-1-P)) - goto ovfl; - word0(rv) += P*Exp_msk1; -#else - /* rv = */ rounded_product(rv, tens[e]); -#endif - goto ret; - } - } + ) { + if (!e) + goto ret; + if (e > 0) { + if (e <= Ten_pmax) { + /* rv = */ rounded_product(rv, tens[e]); + goto ret; + } + i = DBL_DIG - nd; + if (e <= Ten_pmax + i) { + /* A fancier test would sometimes let us do + * this for larger i values. + */ + e -= i; + rv *= tens[i]; + /* rv = */ rounded_product(rv, tens[e]); + goto ret; + } + } #ifndef Inaccurate_Divide - else if (e >= -Ten_pmax) { - /* rv = */ rounded_quotient(rv, tens[-e]); - goto ret; - } + else if (e >= -Ten_pmax) { + /* rv = */ rounded_quotient(rv, tens[-e]); + goto ret; + } #endif - } - e1 += nd - k; + } + e1 += nd - k; - /* Get starting approximation = rv * 10**e1 */ + scale = 0; - if (e1 > 0) { - if ((i = e1 & 15) != 0) - rv *= tens[i]; - if (e1 &= ~15) { - if (e1 > DBL_MAX_10_EXP) { - ovfl: - errno = ERANGE; + /* Get starting approximation = rv * 10**e1 */ + + if (e1 > 0) { + if ((i = e1 & 15) != 0) + rv *= tens[i]; + if (e1 &= ~15) { + if (e1 > DBL_MAX_10_EXP) { + ovfl: + errno = ERANGE; #ifdef __STDC__ - rv = HUGE_VAL; + rv = HUGE_VAL; #else - /* Can't trust HUGE_VAL */ -#ifdef IEEE_Arith - word0(rv) = Exp_mask; - word1(rv) = 0; + /* Can't trust HUGE_VAL */ + word0(rv) = Exp_mask; + word1(rv) = 0; +#endif + if (bd0) + goto retfree; + goto ret; + } + e1 >>= 4; + for(j = 0; e1 > 1; j++, e1 >>= 1) + if (e1 & 1) + rv *= bigtens[j]; + /* The last multiplication could overflow. */ + word0(rv) -= P*Exp_msk1; + rv *= bigtens[j]; + if ((z = word0(rv) & Exp_mask) > Exp_msk1*(DBL_MAX_EXP+Bias-P)) + goto ovfl; + if (z > Exp_msk1*(DBL_MAX_EXP+Bias-1-P)) { + /* set to largest number */ + /* (Can't trust DBL_MAX) */ + word0(rv) = Big0; + word1(rv) = Big1; + } + else + word0(rv) += P*Exp_msk1; + } + } + else if (e1 < 0) { + e1 = -e1; + if ((i = e1 & 15) != 0) + rv /= tens[i]; + if (e1 &= ~15) { + e1 >>= 4; + if (e1 >= 1 << n_bigtens) + goto undfl; +#ifdef Avoid_Underflow + if (e1 & Scale_Bit) + scale = P; + for(j = 0; e1 > 0; j++, e1 >>= 1) + if (e1 & 1) + rv *= tinytens[j]; + if (scale && (j = P + 1 - ((word0(rv) & Exp_mask) + >> Exp_shift)) > 0) { + /* scaled rv is denormal; zap j low bits */ + if (j >= 32) { + word1(rv) = 0; + word0(rv) &= 0xffffffff << (j-32); + if (!word0(rv)) + word0(rv) = 1; + } + else + word1(rv) &= 0xffffffff << j; + } #else - word0(rv) = Big0; - word1(rv) = Big1; + for(j = 0; e1 > 1; j++, e1 >>= 1) + if (e1 & 1) + rv *= tinytens[j]; + /* The last multiplication could underflow. */ + rv0 = rv; + rv *= tinytens[j]; + if (!rv) { + rv = 2.*rv0; + rv *= tinytens[j]; #endif + if (!rv) { + undfl: + rv = 0.; + errno = ERANGE; + if (bd0) + goto retfree; + goto ret; + } +#ifndef Avoid_Underflow + word0(rv) = Tiny0; + word1(rv) = Tiny1; + /* The refinement below will clean + * this approximation up. + */ + } #endif - if (bd0) - goto retfree; - goto ret; - } - if (e1 >>= 4) { - for(j = 0; e1 > 1; j++, e1 >>= 1) - if (e1 & 1) - rv *= bigtens[j]; - /* The last multiplication could overflow. */ - word0(rv) -= P*Exp_msk1; - rv *= bigtens[j]; - if ((z = word0(rv) & Exp_mask) - > Exp_msk1*(DBL_MAX_EXP+Bias-P)) - goto ovfl; - if (z > Exp_msk1*(DBL_MAX_EXP+Bias-1-P)) { - /* set to largest number */ - /* (Can't trust DBL_MAX) */ - word0(rv) = Big0; - word1(rv) = Big1; - } - else - word0(rv) += P*Exp_msk1; - } + } + } - } - } - else if (e1 < 0) { - e1 = -e1; - if ((i = e1 & 15) != 0) - rv /= tens[i]; - if (e1 &= ~15) { - e1 >>= 4; - if (e1 >= 1 << n_bigtens) - goto undfl; - for(j = 0; e1 > 1; j++, e1 >>= 1) - if (e1 & 1) - rv *= tinytens[j]; - /* The last multiplication could underflow. */ - rv0 = rv; - rv *= tinytens[j]; - if (!rv) { - rv = 2.*rv0; - rv *= tinytens[j]; - if (!rv) { - undfl: - rv = 0.; - errno = ERANGE; - if (bd0) - goto retfree; - goto ret; - } - word0(rv) = Tiny0; - word1(rv) = Tiny1; - /* The refinement below will clean - * this approximation up. - */ - } - } - } + /* Now the hard part -- adjusting rv to the correct value.*/ - /* Now the hard part -- adjusting rv to the correct value.*/ + /* Put digits into bd: true value = bd * 10^e */ - /* Put digits into bd: true value = bd * 10^e */ + bd0 = s2b(s0, nd0, nd, y); - bd0 = s2b(s0, nd0, nd, y); + for(;;) { + bd = Balloc(bd0->k); + Bcopy(bd, bd0); + bb = d2b(rv, &bbe, &bbbits); /* rv = bb * 2^bbe */ + bs = i2b(1); - for(;;) { - bd = Balloc(bd0->k); - Bcopy(bd, bd0); - bb = d2b(rv, &bbe, &bbbits); /* rv = bb * 2^bbe */ - bs = i2b(1); - - if (e >= 0) { - bb2 = bb5 = 0; - bd2 = bd5 = e; - } - else { - bb2 = bb5 = -e; - bd2 = bd5 = 0; - } - if (bbe >= 0) - bb2 += bbe; - else - bd2 -= bbe; - bs2 = bb2; + if (e >= 0) { + bb2 = bb5 = 0; + bd2 = bd5 = e; + } + else { + bb2 = bb5 = -e; + bd2 = bd5 = 0; + } + if (bbe >= 0) + bb2 += bbe; + else + bd2 -= bbe; + bs2 = bb2; #ifdef Sudden_Underflow -#ifdef IBM - j = 1 + 4*P - 3 - bbbits + ((bbe + bbbits - 1) & 3); + j = P + 1 - bbbits; #else - j = P + 1 - bbbits; -#endif +#ifdef Avoid_Underflow + j = bbe - scale; #else - i = bbe + bbbits - 1; /* logb(rv) */ - if (i < Emin) /* denormal */ - j = bbe + (P-Emin); - else - j = P + 1 - bbbits; + j = bbe; #endif - bb2 += j; - bd2 += j; - i = bb2 < bd2 ? bb2 : bd2; - if (i > bs2) - i = bs2; - if (i > 0) { - bb2 -= i; - bd2 -= i; - bs2 -= i; - } - if (bb5 > 0) { - bs = pow5mult(bs, bb5); - bb1 = mult(bs, bb); - Bfree(bb); - bb = bb1; - } - if (bb2 > 0) - bb = lshift(bb, bb2); - if (bd5 > 0) - bd = pow5mult(bd, bd5); - if (bd2 > 0) - bd = lshift(bd, bd2); - if (bs2 > 0) - bs = lshift(bs, bs2); - delta = diff(bb, bd); - dsign = delta->sign; - delta->sign = 0; - i = cmp(delta, bs); - if (i < 0) { - /* Error is less than half an ulp -- check for - * special case of mantissa a power of two. - */ - if (dsign || word1(rv) || word0(rv) & Bndry_mask) - break; - delta = lshift(delta,Log2P); - if (cmp(delta, bs) > 0) - goto drop_down; - break; - } - if (i == 0) { - /* exactly half-way between */ - if (dsign) { - if ((word0(rv) & Bndry_mask1) == Bndry_mask1 - && word1(rv) == 0xffffffff) { - /*boundary case -- increment exponent*/ - word0(rv) = (word0(rv) & Exp_mask) - + Exp_msk1 -#ifdef IBM - | Exp_msk1 >> 4 + i = j + bbbits - 1; /* logb(rv) */ + if (i < Emin) /* denormal */ + j += P - Emin; + else + j = P + 1 - bbbits; #endif - ; - word1(rv) = 0; - break; - } - } - else if (!(word0(rv) & Bndry_mask) && !word1(rv)) { - drop_down: - /* boundary case -- decrement exponent */ + bb2 += j; + bd2 += j; +#ifdef Avoid_Underflow + bd2 += scale; +#endif + i = bb2 < bd2 ? bb2 : bd2; + if (i > bs2) + i = bs2; + if (i > 0) { + bb2 -= i; + bd2 -= i; + bs2 -= i; + } + if (bb5 > 0) { + bs = pow5mult(bs, bb5); + bb1 = mult(bs, bb); + Bfree(bb); + bb = bb1; + } + if (bb2 > 0) + bb = lshift(bb, bb2); + if (bd5 > 0) + bd = pow5mult(bd, bd5); + if (bd2 > 0) + bd = lshift(bd, bd2); + if (bs2 > 0) + bs = lshift(bs, bs2); + delta = diff(bb, bd); + dsign = delta->sign; + delta->sign = 0; + i = cmp(delta, bs); + if (i < 0) { + /* Error is less than half an ulp -- check for + * special case of mantissa a power of two. + */ + if (dsign || word1(rv) || word0(rv) & Bndry_mask +#ifdef Avoid_Underflow + || (word0(rv) & Exp_mask) <= Exp_msk1 + P*Exp_msk1 +#else + || (word0(rv) & Exp_mask) <= Exp_msk1 +#endif + ) { +#ifdef Avoid_Underflow + if (!delta->x[0] && delta->wds == 1) + dsign = 2; +#endif + break; + } + delta = lshift(delta,Log2P); + if (cmp(delta, bs) > 0) + goto drop_down; + break; + } + if (i == 0) { + /* exactly half-way between */ + if (dsign) { + if ((word0(rv) & Bndry_mask1) == Bndry_mask1 + && word1(rv) == 0xffffffff) { + /*boundary case -- increment exponent*/ + word0(rv) = (word0(rv) & Exp_mask) + Exp_msk1; + word1(rv) = 0; +#ifdef Avoid_Underflow + dsign = 0; +#endif + break; + } + } + else if (!(word0(rv) & Bndry_mask) && !word1(rv)) { +#ifdef Avoid_Underflow + dsign = 2; +#endif + drop_down: + /* boundary case -- decrement exponent */ #ifdef Sudden_Underflow - L = word0(rv) & Exp_mask; -#ifdef IBM - if (L < Exp_msk1) + L = word0(rv) & Exp_mask; + if (L <= Exp_msk1) + goto undfl; + L -= Exp_msk1; #else - if (L <= Exp_msk1) + L = (word0(rv) & Exp_mask) - Exp_msk1; #endif - goto undfl; - L -= Exp_msk1; -#else - L = (word0(rv) & Exp_mask) - Exp_msk1; -#endif - word0(rv) = L | Bndry_mask1; - word1(rv) = 0xffffffff; -#ifdef IBM - goto cont; -#else - break; -#endif - } + word0(rv) = L | Bndry_mask1; + word1(rv) = 0xffffffff; + break; + } #ifndef ROUND_BIASED - if (!(word1(rv) & LSB)) - break; + if (!(word1(rv) & LSB)) + break; #endif - if (dsign) - rv += ulp(rv); + if (dsign) + rv += ulp(rv); #ifndef ROUND_BIASED - else { - rv -= ulp(rv); + else { + rv -= ulp(rv); #ifndef Sudden_Underflow - if (!rv) - goto undfl; + if (!rv) + goto undfl; #endif - } + } +#ifdef Avoid_Underflow + dsign = 1 - dsign; #endif - break; - } - if ((aadj = ratio(delta, bs)) <= 2.) { - if (dsign) - aadj = aadj1 = 1.; - else if (word1(rv) || word0(rv) & Bndry_mask) { +#endif + break; + } + if ((aadj = ratio(delta, bs)) <= 2.) { + if (dsign) + aadj = aadj1 = 1.; + else if (word1(rv) || word0(rv) & Bndry_mask) { #ifndef Sudden_Underflow - if (word1(rv) == Tiny1 && !word0(rv)) - goto undfl; + if (word1(rv) == Tiny1 && !word0(rv)) + goto undfl; #endif - aadj = 1.; - aadj1 = -1.; - } - else { - /* special case -- power of FLT_RADIX to be */ - /* rounded down... */ + aadj = 1.; + aadj1 = -1.; + } + else { + /* special case -- power of FLT_RADIX to be */ + /* rounded down... */ - if (aadj < 2./FLT_RADIX) - aadj = 1./FLT_RADIX; - else - aadj *= 0.5; - aadj1 = -aadj; - } - } - else { - aadj *= 0.5; - aadj1 = dsign ? aadj : -aadj; + if (aadj < 2./FLT_RADIX) + aadj = 1./FLT_RADIX; + else + aadj *= 0.5; + aadj1 = -aadj; + } + } + else { + aadj *= 0.5; + aadj1 = dsign ? aadj : -aadj; #ifdef Check_FLT_ROUNDS - switch(FLT_ROUNDS) { - case 2: /* towards +infinity */ - aadj1 -= 0.5; - break; - case 0: /* towards 0 */ - case 3: /* towards -infinity */ - aadj1 += 0.5; - } + switch(FLT_ROUNDS) { + case 2: /* towards +infinity */ + aadj1 -= 0.5; + break; + case 0: /* towards 0 */ + case 3: /* towards -infinity */ + aadj1 += 0.5; + } #else - if (FLT_ROUNDS == 0) - aadj1 += 0.5; + if (FLT_ROUNDS == 0) + aadj1 += 0.5; #endif - } - y = word0(rv) & Exp_mask; + } + y = word0(rv) & Exp_mask; - /* Check for overflow */ + /* Check for overflow */ - if (y == Exp_msk1*(DBL_MAX_EXP+Bias-1)) { - rv0 = rv; - word0(rv) -= P*Exp_msk1; - adj = aadj1 * ulp(rv); - rv += adj; - if ((word0(rv) & Exp_mask) >= - Exp_msk1*(DBL_MAX_EXP+Bias-P)) { - if (word0(rv0) == Big0 && word1(rv0) == Big1) - goto ovfl; - word0(rv) = Big0; - word1(rv) = Big1; - goto cont; - } - else - word0(rv) += P*Exp_msk1; - } - else { + if (y == Exp_msk1*(DBL_MAX_EXP+Bias-1)) { + rv0 = rv; + word0(rv) -= P*Exp_msk1; + adj = aadj1 * ulp(rv); + rv += adj; + if ((word0(rv) & Exp_mask) >= + Exp_msk1*(DBL_MAX_EXP+Bias-P)) { + if (word0(rv0) == Big0 && word1(rv0) == Big1) + goto ovfl; + word0(rv) = Big0; + word1(rv) = Big1; + goto cont; + } + else + word0(rv) += P*Exp_msk1; + } + else { #ifdef Sudden_Underflow - if ((word0(rv) & Exp_mask) <= P*Exp_msk1) { - rv0 = rv; - word0(rv) += P*Exp_msk1; - adj = aadj1 * ulp(rv); - rv += adj; -#ifdef IBM - if ((word0(rv) & Exp_mask) < P*Exp_msk1) + if ((word0(rv) & Exp_mask) <= P*Exp_msk1) { + rv0 = rv; + word0(rv) += P*Exp_msk1; + adj = aadj1 * ulp(rv); + rv += adj; + if ((word0(rv) & Exp_mask) <= P*Exp_msk1) + { + if (word0(rv0) == Tiny0 + && word1(rv0) == Tiny1) + goto undfl; + word0(rv) = Tiny0; + word1(rv) = Tiny1; + goto cont; + } + else + word0(rv) -= P*Exp_msk1; + } + else { + adj = aadj1 * ulp(rv); + rv += adj; + } #else - if ((word0(rv) & Exp_mask) <= P*Exp_msk1) -#endif - { - if (word0(rv0) == Tiny0 - && word1(rv0) == Tiny1) - goto undfl; - word0(rv) = Tiny0; - word1(rv) = Tiny1; - goto cont; - } - else - word0(rv) -= P*Exp_msk1; - } - else { - adj = aadj1 * ulp(rv); - rv += adj; - } + /* Compute adj so that the IEEE rounding rules will + * correctly round rv + adj in some half-way cases. + * If rv * ulp(rv) is denormalized (i.e., + * y <= (P-1)*Exp_msk1), we must adjust aadj to avoid + * trouble from bits lost to denormalization; + * example: 1.2e-307 . + */ +#ifdef Avoid_Underflow + if (y <= P*Exp_msk1 && aadj > 1.) #else - /* Compute adj so that the IEEE rounding rules will - * correctly round rv + adj in some half-way cases. - * If rv * ulp(rv) is denormalized (i.e., - * y <= (P-1)*Exp_msk1), we must adjust aadj to avoid - * trouble from bits lost to denormalization; - * example: 1.2e-307 . - */ - if (y <= (P-1)*Exp_msk1 && aadj >= 1.) { - aadj1 = (double)(int32)(aadj + 0.5); - if (!dsign) - aadj1 = -aadj1; - } - adj = aadj1 * ulp(rv); - rv += adj; + if (y <= (P-1)*Exp_msk1 && aadj > 1.) #endif - } - z = word0(rv) & Exp_mask; - if (y == z) { - /* Can we stop now? */ - L = (Long)aadj; - aadj -= L; - /* The tolerances below are conservative. */ - if (dsign || word1(rv) || word0(rv) & Bndry_mask) { - if (aadj < .4999999 || aadj > .5000001) - break; - } - else if (aadj < .4999999/FLT_RADIX) - break; - } - cont: - Bfree(bb); - Bfree(bd); - Bfree(bs); - Bfree(delta); - } + { + aadj1 = (double)(int32)(aadj + 0.5); + if (!dsign) + aadj1 = -aadj1; + } +#ifdef Avoid_Underflow + if (scale && y <= P*Exp_msk1) + word0(aadj1) += (P+1)*Exp_msk1 - y; +#endif + adj = aadj1 * ulp(rv); + rv += adj; +#endif + } + z = word0(rv) & Exp_mask; +#ifdef Avoid_Underflow + if (!scale) +#endif + if (y == z) { + /* Can we stop now? */ + L = (Long)aadj; + aadj -= L; + /* The tolerances below are conservative. */ + if (dsign || word1(rv) || word0(rv) & Bndry_mask) { + if (aadj < .4999999 || aadj > .5000001) + break; + } + else if (aadj < .4999999/FLT_RADIX) + break; + } + cont: + Bfree(bb); + Bfree(bd); + Bfree(bs); + Bfree(delta); + } +#ifdef Avoid_Underflow + if (scale) { + word0(rv0) = Exp_1 - P*Exp_msk1; + word1(rv0) = 0; + if ((word0(rv) & Exp_mask) <= P*Exp_msk1 + && word1(rv) & 1 + && dsign != 2) + if (dsign) { +#ifdef Sudden_Underflow + /* rv will be 0, but this would give the */ + /* right result if only rv *= rv0 worked. */ + word0(rv) += P*Exp_msk1; + word0(rv0) = Exp_1 - 2*P*Exp_msk1; +#endif + rv += ulp(rv); + } + else + word1(rv) &= ~1; + rv *= rv0; + } +#endif /* Avoid_Underflow */ retfree: - Bfree(bb); - Bfree(bd); - Bfree(bs); - Bfree(bd0); - Bfree(delta); + Bfree(bb); + Bfree(bd); + Bfree(bs); + Bfree(bd0); + Bfree(delta); ret: - if (se) - *se = (char *)s; - return sign ? -rv : rv; + if (se) + *se = (char *)s; + return sign ? -rv : rv; } -static int32 -quorem(Bigint *b, Bigint *S) + +/* Return floor(b/2^k) and set b to be the remainder. The returned quotient must be less than 2^32. */ +static uint32 quorem2(Bigint *b, int32 k) { - int32 n; - Long borrow, y; - ULong carry, q, ys; - ULong *bx, *bxe, *sx, *sxe; -#ifdef Pack_32 - Long z; - ULong si, zs; + ULong mask; + ULong result; + ULong *bx, *bxe; + int32 w; + int32 n = k >> 5; + k &= 0x1F; + mask = (1<wds - n; + if (w <= 0) + return 0; + JS_ASSERT(w <= 2); + bx = b->x; + bxe = bx + n; + result = *bxe >> k; + *bxe &= mask; + if (w == 2) { + JS_ASSERT(!(bxe[1] & ~mask)); + if (k) + result |= bxe[1] << (32 - k); + } + n++; + while (!*bxe && bxe != bx) { + n--; + bxe--; + } + b->wds = n; + return result; +} + +/* Return floor(b/S) and set b to be the remainder. As added restrictions, b must not have + * more words than S, the most significant word of S must not start with a 1 bit, and the + * returned quotient must be less than 36. */ +static int32 quorem(Bigint *b, Bigint *S) +{ + int32 n; + ULong *bx, *bxe, q, *sx, *sxe; +#ifdef ULLong + ULLong borrow, carry, y, ys; +#else + ULong borrow, carry, y, ys; + ULong si, z, zs; #endif - n = S->wds; -#ifdef DEBUG - /*debug*/ if (b->wds > n) - /*debug*/ Bug("oversize b in quorem"); -#endif - if (b->wds < n) - return 0; - sx = S->x; - sxe = sx + --n; - bx = b->x; - bxe = bx + n; - q = *bxe / (*sxe + 1); /* ensure q <= true quotient */ -#ifdef DEBUG - /*debug*/ if (q > 9) - /*debug*/ Bug("oversized quotient in quorem"); -#endif - if (q) { - borrow = 0; - carry = 0; - do { -#ifdef Pack_32 - si = *sx++; - ys = (si & 0xffff) * q + carry; - zs = (si >> 16) * q + (ys >> 16); - carry = zs >> 16; - y = (*bx & 0xffff) - (ys & 0xffff) + borrow; - borrow = y >> 16; - Sign_Extend(borrow, y); - z = (*bx >> 16) - (zs & 0xffff) + borrow; - borrow = z >> 16; - Sign_Extend(borrow, z); - Storeinc(bx, z, y); + n = S->wds; + JS_ASSERT(b->wds <= n); + if (b->wds < n) + return 0; + sx = S->x; + sxe = sx + --n; + bx = b->x; + bxe = bx + n; + JS_ASSERT(*sxe <= 0x7FFFFFFF); + q = *bxe / (*sxe + 1); /* ensure q <= true quotient */ + JS_ASSERT(q < 36); + if (q) { + borrow = 0; + carry = 0; + do { +#ifdef ULLong + ys = *sx++ * (ULLong)q + carry; + carry = ys >> 32; + y = *bx - (ys & 0xffffffffUL) - borrow; + borrow = y >> 32 & 1UL; + *bx++ = (ULong)(y & 0xffffffffUL); #else - ys = *sx++ * q + carry; - carry = ys >> 16; - y = *bx - (ys & 0xffff) + borrow; - borrow = y >> 16; - Sign_Extend(borrow, y); - *bx++ = y & 0xffff; + si = *sx++; + ys = (si & 0xffff) * q + carry; + zs = (si >> 16) * q + (ys >> 16); + carry = zs >> 16; + y = (*bx & 0xffff) - (ys & 0xffff) - borrow; + borrow = (y & 0x10000) >> 16; + z = (*bx >> 16) - (zs & 0xffff) - borrow; + borrow = (z & 0x10000) >> 16; + Storeinc(bx, z, y); #endif - } - while(sx <= sxe); - if (!*bxe) { - bx = b->x; - while(--bxe > bx && !*bxe) - --n; - b->wds = n; - } - } - if (cmp(b, S) >= 0) { - q++; - borrow = 0; - carry = 0; - bx = b->x; - sx = S->x; - do { -#ifdef Pack_32 - si = *sx++; - ys = (si & 0xffff) + carry; - zs = (si >> 16) + (ys >> 16); - carry = zs >> 16; - y = (*bx & 0xffff) - (ys & 0xffff) + borrow; - borrow = y >> 16; - Sign_Extend(borrow, y); - z = (*bx >> 16) - (zs & 0xffff) + borrow; - borrow = z >> 16; - Sign_Extend(borrow, z); - Storeinc(bx, z, y); + } + while(sx <= sxe); + if (!*bxe) { + bx = b->x; + while(--bxe > bx && !*bxe) + --n; + b->wds = n; + } + } + if (cmp(b, S) >= 0) { + q++; + borrow = 0; + carry = 0; + bx = b->x; + sx = S->x; + do { +#ifdef ULLong + ys = *sx++ + carry; + carry = ys >> 32; + y = *bx - (ys & 0xffffffffUL) - borrow; + borrow = y >> 32 & 1UL; + *bx++ = (ULong)(y & 0xffffffffUL); #else - ys = *sx++ + carry; - carry = ys >> 16; - y = *bx - (ys & 0xffff) + borrow; - borrow = y >> 16; - Sign_Extend(borrow, y); - *bx++ = y & 0xffff; + si = *sx++; + ys = (si & 0xffff) + carry; + zs = (si >> 16) + (ys >> 16); + carry = zs >> 16; + y = (*bx & 0xffff) - (ys & 0xffff) - borrow; + borrow = (y & 0x10000) >> 16; + z = (*bx >> 16) - (zs & 0xffff) - borrow; + borrow = (z & 0x10000) >> 16; + Storeinc(bx, z, y); #endif - } - while(sx <= sxe); - bx = b->x; - bxe = bx + n; - if (!*bxe) { - while(--bxe > bx && !*bxe) - --n; - b->wds = n; - } - } - return (int)q; + } while(sx <= sxe); + bx = b->x; + bxe = bx + n; + if (!*bxe) { + while(--bxe > bx && !*bxe) + --n; + b->wds = n; + } + } + return (int32)q; } /* dtoa for IEEE arithmetic (dmg): convert double to ASCII string. @@ -1850,767 +1791,1001 @@ quorem(Bigint *b, Bigint *S) * Guy L. Steele, Jr. and Jon L. White [Proc. ACM SIGPLAN '90, pp. 92-101]. * * Modifications: - * 1. Rather than iterating, we use a simple numeric overestimate - * to determine k = floor(log10(d)). We scale relevant - * quantities using O(log2(k)) rather than O(k) multiplications. - * 2. For some modes > 2 (corresponding to ecvt and fcvt), we don't - * try to generate digits strictly left to right. Instead, we - * compute with fewer bits and propagate the carry if necessary - * when rounding the final digit up. This is often faster. - * 3. Under the assumption that input will be rounded nearest, - * mode 0 renders 1e23 as 1e23 rather than 9.999999999999999e22. - * That is, we allow equality in stopping tests when the - * round-nearest rule will give the same floating-point value - * as would satisfaction of the stopping test with strict - * inequality. - * 4. We remove common factors of powers of 2 from relevant - * quantities. - * 5. When converting floating-point integers less than 1e16, - * we use floating-point arithmetic rather than resorting - * to multiple-precision integers. - * 6. When asked to produce fewer than 15 digits, we first try - * to get by with floating-point arithmetic; we resort to - * multiple-precision integer arithmetic only if we cannot - * guarantee that the floating-point calculation has given - * the correctly rounded result. For k requested digits and - * "uniformly" distributed input, the probability is - * something like 10^(k-15) that we must resort to the Long - * calculation. + * 1. Rather than iterating, we use a simple numeric overestimate + * to determine k = floor(log10(d)). We scale relevant + * quantities using O(log2(k)) rather than O(k) multiplications. + * 2. For some modes > 2 (corresponding to ecvt and fcvt), we don't + * try to generate digits strictly left to right. Instead, we + * compute with fewer bits and propagate the carry if necessary + * when rounding the final digit up. This is often faster. + * 3. Under the assumption that input will be rounded nearest, + * mode 0 renders 1e23 as 1e23 rather than 9.999999999999999e22. + * That is, we allow equality in stopping tests when the + * round-nearest rule will give the same floating-point value + * as would satisfaction of the stopping test with strict + * inequality. + * 4. We remove common factors of powers of 2 from relevant + * quantities. + * 5. When converting floating-point integers less than 1e16, + * we use floating-point arithmetic rather than resorting + * to multiple-precision integers. + * 6. When asked to produce fewer than 15 digits, we first try + * to get by with floating-point arithmetic; we resort to + * multiple-precision integer arithmetic only if we cannot + * guarantee that the floating-point calculation has given + * the correctly rounded result. For k requested digits and + * "uniformly" distributed input, the probability is + * something like 10^(k-15) that we must resort to the Long + * calculation. */ +/* Always emits at least one digit. */ +/* If biasUp is set, then rounding in modes 2 and 3 will round away from zero + * when the number is exactly halfway between two representable values. For example, + * rounding 2.5 to zero digits after the decimal point will return 3 and not 2. + * 2.49 will still round to 2, and 2.51 will still round to 3. */ +/* bufsize should be at least 20 for modes 0 and 1. For the other modes, + * bufsize should be two greater than the maximum number of output characters expected. */ static JSBool -JS_dtoa(double d, int mode, int ndigits, - int *decpt, int *sign, char **rve, char *buf, size_t bufsize) +JS_dtoa(double d, int mode, JSBool biasUp, int ndigits, + int *decpt, int *sign, char **rve, char *buf, size_t bufsize) { - /* Arguments ndigits, decpt, sign are similar to those - of ecvt and fcvt; trailing zeros are suppressed from - the returned string. If not null, *rve is set to point - to the end of the return value. If d is +-Infinity or NaN, - then *decpt is set to 9999. + /* Arguments ndigits, decpt, sign are similar to those + of ecvt and fcvt; trailing zeros are suppressed from + the returned string. If not null, *rve is set to point + to the end of the return value. If d is +-Infinity or NaN, + then *decpt is set to 9999. - mode: - 0 ==> shortest string that yields d when read in - and rounded to nearest. - 1 ==> like 0, but with Steele & White stopping rule; - e.g. with IEEE P754 arithmetic , mode 0 gives - 1e23 whereas mode 1 gives 9.999999999999999e22. - 2 ==> max(1,ndigits) significant digits. This gives a - return value similar to that of ecvt, except - that trailing zeros are suppressed. - 3 ==> through ndigits past the decimal point. This - gives a return value similar to that from fcvt, - except that trailing zeros are suppressed, and - ndigits can be negative. - 4-9 should give the same return values as 2-3, i.e., - 4 <= mode <= 9 ==> same return as mode - 2 + (mode & 1). These modes are mainly for - debugging; often they run slower but sometimes - faster than modes 2-3. - 4,5,8,9 ==> left-to-right digit generation. - 6-9 ==> don't try fast floating-point estimate - (if applicable). + mode: + 0 ==> shortest string that yields d when read in + and rounded to nearest. + 1 ==> like 0, but with Steele & White stopping rule; + e.g. with IEEE P754 arithmetic , mode 0 gives + 1e23 whereas mode 1 gives 9.999999999999999e22. + 2 ==> max(1,ndigits) significant digits. This gives a + return value similar to that of ecvt, except + that trailing zeros are suppressed. + 3 ==> through ndigits past the decimal point. This + gives a return value similar to that from fcvt, + except that trailing zeros are suppressed, and + ndigits can be negative. + 4-9 should give the same return values as 2-3, i.e., + 4 <= mode <= 9 ==> same return as mode + 2 + (mode & 1). These modes are mainly for + debugging; often they run slower but sometimes + faster than modes 2-3. + 4,5,8,9 ==> left-to-right digit generation. + 6-9 ==> don't try fast floating-point estimate + (if applicable). - Values of mode other than 0-9 are treated as mode 0. + Values of mode other than 0-9 are treated as mode 0. - Sufficient space is allocated to the return value - to hold the suppressed trailing zeros. - */ + Sufficient space is allocated to the return value + to hold the suppressed trailing zeros. + */ - int32 bbits, b2, b5, be, dig, i, ieps, ilim, ilim0, ilim1, - j, j1, k, k0, k_check, leftright, m2, m5, s2, s5, - spec_case, try_quick; - Long L; + int32 bbits, b2, b5, be, dig, i, ieps, ilim, ilim0, ilim1, + j, j1, k, k0, k_check, leftright, m2, m5, s2, s5, + spec_case, try_quick; + Long L; #ifndef Sudden_Underflow - int32 denorm; - ULong x; + int32 denorm; + ULong x; #endif - Bigint *b, *b1, *delta, *mlo, *mhi, *S; - double d2, ds, eps; - char *s, *s0; - Bigint *result = 0; - static int32 result_k; - JSBool retval; - size_t strsize; - - spec_case = 0; /* Not a power-of-two special case */ - ilim = ilim1 = 0; - mlo = NULL; + Bigint *b, *b1, *delta, *mlo, *mhi, *S; + double d2, ds, eps; + char *s; #ifdef JS_THREADSAFE - if (!initialized) InitDtoa(); + if (!initialized) InitDtoa(); #endif - if (word0(d) & Sign_bit) { - /* set sign for everything, including 0's and NaNs */ - *sign = 1; - word0(d) &= ~Sign_bit; /* clear sign bit */ - } - else - *sign = 0; + if (word0(d) & Sign_bit) { + /* set sign for everything, including 0's and NaNs */ + *sign = 1; + word0(d) &= ~Sign_bit; /* clear sign bit */ + } + else + *sign = 0; -#if defined(IEEE_Arith) + defined(VAX) -#ifdef IEEE_Arith - if ((word0(d) & Exp_mask) == Exp_mask) -#else - if (word0(d) == 0x8000) -#endif - { - /* Infinity or NaN */ - *decpt = 9999; - s = -#ifdef IEEE_Arith - !word1(d) && !(word0(d) & 0xfffff) ? "Infinity" : -#endif - "NaN"; - if ((s[0] == 'I' && bufsize < 9) || (s[0] == 'N' && bufsize < 4)) { - JS_ASSERT(JS_FALSE); -/* JS_SetError(JS_BUFFER_OVERFLOW_ERROR, 0); */ - return JS_FALSE; - } - strcpy(buf, s); - if (rve) { - *rve = -#ifdef IEEE_Arith - buf[3] ? buf + 8 : -#endif - buf + 3; - JS_ASSERT(**rve == '\0'); - } - return JS_TRUE; - } -#endif -#ifdef IBM - d += 0; /* normalize */ -#endif - if (!d) { - *decpt = 1; - if (bufsize < 2) { - JS_ASSERT(JS_FALSE); -/* JS_SetError(JS_BUFFER_OVERFLOW_ERROR, 0); */ - return JS_FALSE; - } - buf[0] = '0'; buf[1] = '\0'; /* copy "0" to buffer */ - if (rve) { - *rve = buf + 1; - JS_ASSERT(**rve == '\0'); - } - return JS_TRUE; - } + if ((word0(d) & Exp_mask) == Exp_mask) { + /* Infinity or NaN */ + *decpt = 9999; + s = !word1(d) && !(word0(d) & Frac_mask) ? "Infinity" : "NaN"; + if ((s[0] == 'I' && bufsize < 9) || (s[0] == 'N' && bufsize < 4)) { + JS_ASSERT(JS_FALSE); +/* JS_SetError(JS_BUFFER_OVERFLOW_ERROR, 0); */ + return JS_FALSE; + } + strcpy(buf, s); + if (rve) { + *rve = buf[3] ? buf + 8 : buf + 3; + JS_ASSERT(**rve == '\0'); + } + return JS_TRUE; + } + if (!d) { + no_digits: + *decpt = 1; + if (bufsize < 2) { + JS_ASSERT(JS_FALSE); +/* JS_SetError(JS_BUFFER_OVERFLOW_ERROR, 0); */ + return JS_FALSE; + } + buf[0] = '0'; buf[1] = '\0'; /* copy "0" to buffer */ + if (rve) + *rve = buf + 1; + return JS_TRUE; + } - b = d2b(d, &be, &bbits); + b = d2b(d, &be, &bbits); #ifdef Sudden_Underflow - i = (int32)(word0(d) >> Exp_shift1 & (Exp_mask>>Exp_shift1)); + i = (int32)(word0(d) >> Exp_shift1 & (Exp_mask>>Exp_shift1)); #else - if ((i = (int32)(word0(d) >> Exp_shift1 & (Exp_mask>>Exp_shift1))) != 0) { -#endif - d2 = d; - word0(d2) &= Frac_mask1; - word0(d2) |= Exp_11; -#ifdef IBM - if (j = 11 - hi0bits(word0(d2) & Frac_mask)) - d2 /= 1 << j; + if ((i = (int32)(word0(d) >> Exp_shift1 & (Exp_mask>>Exp_shift1))) != 0) { #endif + d2 = d; + word0(d2) &= Frac_mask1; + word0(d2) |= Exp_11; - /* log(x) ~=~ log(1.5) + (x-1.5)/1.5 - * log10(x) = log(x) / log(10) - * ~=~ log(1.5)/log(10) + (x-1.5)/(1.5*log(10)) - * log10(d) = (i-Bias)*log(2)/log(10) + log10(d2) - * - * This suggests computing an approximation k to log10(d) by - * - * k = (i - Bias)*0.301029995663981 - * + ( (d2-1.5)*0.289529654602168 + 0.176091259055681 ); - * - * We want k to be too large rather than too small. - * The error in the first-order Taylor series approximation - * is in our favor, so we just round up the constant enough - * to compensate for any error in the multiplication of - * (i - Bias) by 0.301029995663981; since |i - Bias| <= 1077, - * and 1077 * 0.30103 * 2^-52 ~=~ 7.2e-14, - * adding 1e-13 to the constant term more than suffices. - * Hence we adjust the constant term to 0.1760912590558. - * (We could get a more accurate k by invoking log10, - * but this is probably not worthwhile.) - */ + /* log(x) ~=~ log(1.5) + (x-1.5)/1.5 + * log10(x) = log(x) / log(10) + * ~=~ log(1.5)/log(10) + (x-1.5)/(1.5*log(10)) + * log10(d) = (i-Bias)*log(2)/log(10) + log10(d2) + * + * This suggests computing an approximation k to log10(d) by + * + * k = (i - Bias)*0.301029995663981 + * + ( (d2-1.5)*0.289529654602168 + 0.176091259055681 ); + * + * We want k to be too large rather than too small. + * The error in the first-order Taylor series approximation + * is in our favor, so we just round up the constant enough + * to compensate for any error in the multiplication of + * (i - Bias) by 0.301029995663981; since |i - Bias| <= 1077, + * and 1077 * 0.30103 * 2^-52 ~=~ 7.2e-14, + * adding 1e-13 to the constant term more than suffices. + * Hence we adjust the constant term to 0.1760912590558. + * (We could get a more accurate k by invoking log10, + * but this is probably not worthwhile.) + */ - i -= Bias; -#ifdef IBM - i <<= 2; - i += j; -#endif + i -= Bias; #ifndef Sudden_Underflow - denorm = 0; - } - else { - /* d is denormalized */ + denorm = 0; + } + else { + /* d is denormalized */ - i = bbits + be + (Bias + (P-1) - 1); - x = i > 32 ? word0(d) << (64 - i) | word1(d) >> (i - 32) - : word1(d) << (32 - i); - d2 = x; - word0(d2) -= 31*Exp_msk1; /* adjust exponent */ - i -= (Bias + (P-1) - 1) + 1; - denorm = 1; - } + i = bbits + be + (Bias + (P-1) - 1); + x = i > 32 ? word0(d) << (64 - i) | word1(d) >> (i - 32) : word1(d) << (32 - i); + d2 = x; + word0(d2) -= 31*Exp_msk1; /* adjust exponent */ + i -= (Bias + (P-1) - 1) + 1; + denorm = 1; + } #endif - ds = (d2-1.5)*0.289529654602168 + 0.1760912590558 + i*0.301029995663981; - k = (int32)ds; - if (ds < 0. && ds != k) - k--; /* want k = floor(ds) */ - k_check = 1; - if (k >= 0 && k <= Ten_pmax) { - if (d < tens[k]) - k--; - k_check = 0; - } - j = bbits - i - 1; - if (j >= 0) { - b2 = 0; - s2 = j; - } - else { - b2 = -j; - s2 = 0; - } - if (k >= 0) { - b5 = 0; - s5 = k; - s2 += k; - } - else { - b2 -= k; - b5 = -k; - s5 = 0; - } - if (mode < 0 || mode > 9) - mode = 0; - try_quick = 1; - if (mode > 5) { - mode -= 4; - try_quick = 0; - } - leftright = 1; - switch(mode) { - case 0: - case 1: - ilim = ilim1 = -1; - i = 18; - ndigits = 0; - break; - case 2: - leftright = 0; - /* no break */ - case 4: - if (ndigits <= 0) - ndigits = 1; - ilim = ilim1 = i = ndigits; - break; - case 3: - leftright = 0; - /* no break */ - case 5: - i = ndigits + k + 1; - ilim = i; - ilim1 = i - 1; - if (i <= 0) - i = 1; - } - j = sizeof(ULong); - for(result_k = 0; sizeof(Bigint) - sizeof(ULong) <= (unsigned)i - j; - j <<= 1) result_k++; - result = Balloc(result_k); - s = s0 = (char *)result; + /* At this point d = f*2^i, where 1 <= f < 2. d2 is an approximation of f. */ + ds = (d2-1.5)*0.289529654602168 + 0.1760912590558 + i*0.301029995663981; + k = (int32)ds; + if (ds < 0. && ds != k) + k--; /* want k = floor(ds) */ + k_check = 1; + if (k >= 0 && k <= Ten_pmax) { + if (d < tens[k]) + k--; + k_check = 0; + } + /* At this point floor(log10(d)) <= k <= floor(log10(d))+1. + If k_check is zero, we're guaranteed that k = floor(log10(d)). */ + j = bbits - i - 1; + /* At this point d = b/2^j, where b is an odd integer. */ + if (j >= 0) { + b2 = 0; + s2 = j; + } + else { + b2 = -j; + s2 = 0; + } + if (k >= 0) { + b5 = 0; + s5 = k; + s2 += k; + } + else { + b2 -= k; + b5 = -k; + s5 = 0; + } + /* At this point d/10^k = (b * 2^b2 * 5^b5) / (2^s2 * 5^s5), where b is an odd integer, + b2 >= 0, b5 >= 0, s2 >= 0, and s5 >= 0. */ + if (mode < 0 || mode > 9) + mode = 0; + try_quick = 1; + if (mode > 5) { + mode -= 4; + try_quick = 0; + } + leftright = 1; + ilim = ilim1 = 0; + switch(mode) { + case 0: + case 1: + ilim = ilim1 = -1; + i = 18; + ndigits = 0; + break; + case 2: + leftright = 0; + /* no break */ + case 4: + if (ndigits <= 0) + ndigits = 1; + ilim = ilim1 = i = ndigits; + break; + case 3: + leftright = 0; + /* no break */ + case 5: + i = ndigits + k + 1; + ilim = i; + ilim1 = i - 1; + if (i <= 0) + i = 1; + } + /* ilim is the maximum number of significant digits we want, based on k and ndigits. */ + /* ilim1 is the maximum number of significant digits we want, based on k and ndigits, + when it turns out that k was computed too high by one. */ - if (ilim >= 0 && ilim <= Quick_max && try_quick) { + /* Ensure space for at least i+1 characters, including trailing null. */ + if (bufsize <= (size_t)i) { + Bfree(b); + JS_ASSERT(JS_FALSE); + return JS_FALSE; + } + s = buf; - /* Try to get by with floating-point arithmetic. */ + if (ilim >= 0 && ilim <= Quick_max && try_quick) { - i = 0; - d2 = d; - k0 = k; - ilim0 = ilim; - ieps = 2; /* conservative */ - if (k > 0) { - ds = tens[k&0xf]; - j = k >> 4; - if (j & Bletch) { - /* prevent overflows */ - j &= Bletch - 1; - d /= bigtens[n_bigtens-1]; - ieps++; - } - for(; j; j >>= 1, i++) - if (j & 1) { - ieps++; - ds *= bigtens[i]; - } - d /= ds; - } - else if ((j1 = -k) != 0) { - d *= tens[j1 & 0xf]; - for(j = j1 >> 4; j; j >>= 1, i++) - if (j & 1) { - ieps++; - d *= bigtens[i]; - } - } - if (k_check && d < 1. && ilim > 0) { - if (ilim1 <= 0) - goto fast_failed; - ilim = ilim1; - k--; - d *= 10.; - ieps++; - } - eps = ieps*d + 7.; - word0(eps) -= (P-1)*Exp_msk1; - if (ilim == 0) { - S = mhi = 0; - d -= 5.; - if (d > eps) - goto one_digit; - if (d < -eps) - goto no_digits; - goto fast_failed; - } + /* Try to get by with floating-point arithmetic. */ + + i = 0; + d2 = d; + k0 = k; + ilim0 = ilim; + ieps = 2; /* conservative */ + /* Divide d by 10^k, keeping track of the roundoff error and avoiding overflows. */ + if (k > 0) { + ds = tens[k&0xf]; + j = k >> 4; + if (j & Bletch) { + /* prevent overflows */ + j &= Bletch - 1; + d /= bigtens[n_bigtens-1]; + ieps++; + } + for(; j; j >>= 1, i++) + if (j & 1) { + ieps++; + ds *= bigtens[i]; + } + d /= ds; + } + else if ((j1 = -k) != 0) { + d *= tens[j1 & 0xf]; + for(j = j1 >> 4; j; j >>= 1, i++) + if (j & 1) { + ieps++; + d *= bigtens[i]; + } + } + /* Check that k was computed correctly. */ + if (k_check && d < 1. && ilim > 0) { + if (ilim1 <= 0) + goto fast_failed; + ilim = ilim1; + k--; + d *= 10.; + ieps++; + } + /* eps bounds the cumulative error. */ + eps = ieps*d + 7.; + word0(eps) -= (P-1)*Exp_msk1; + if (ilim == 0) { + S = mhi = 0; + d -= 5.; + if (d > eps) + goto one_digit; + if (d < -eps) + goto no_digits; + goto fast_failed; + } #ifndef No_leftright - if (leftright) { - /* Use Steele & White method of only - * generating digits needed. - */ - eps = 0.5/tens[ilim-1] - eps; - for(i = 0;;) { - L = (Long)d; - d -= L; - *s++ = '0' + (char)L; - if (d < eps) - goto ret1; - if (1. - d < eps) - goto bump_up; - if (++i >= ilim) - break; - eps *= 10.; - d *= 10.; - } - } - else { + if (leftright) { + /* Use Steele & White method of only + * generating digits needed. + */ + eps = 0.5/tens[ilim-1] - eps; + for(i = 0;;) { + L = (Long)d; + d -= L; + *s++ = '0' + (char)L; + if (d < eps) + goto ret1; + if (1. - d < eps) + goto bump_up; + if (++i >= ilim) + break; + eps *= 10.; + d *= 10.; + } + } + else { #endif - /* Generate ilim digits, then fix them up. */ - eps *= tens[ilim-1]; - for(i = 1;; i++, d *= 10.) { - L = (Long)d; - d -= L; - *s++ = '0' + (char)L; - if (i == ilim) { - if (d > 0.5 + eps) - goto bump_up; - else if (d < 0.5 - eps) { - while(*--s == '0') ; - s++; - goto ret1; - } - break; - } - } + /* Generate ilim digits, then fix them up. */ + eps *= tens[ilim-1]; + for(i = 1;; i++, d *= 10.) { + L = (Long)d; + d -= L; + *s++ = '0' + (char)L; + if (i == ilim) { + if (d > 0.5 + eps) + goto bump_up; + else if (d < 0.5 - eps) { + while(*--s == '0') ; + s++; + goto ret1; + } + break; + } + } #ifndef No_leftright - } + } #endif - fast_failed: - s = s0; - d = d2; - k = k0; - ilim = ilim0; - } + fast_failed: + s = buf; + d = d2; + k = k0; + ilim = ilim0; + } - /* Do we have a "small" integer? */ + /* Do we have a "small" integer? */ - if (be >= 0 && k <= Int_max) { - /* Yes. */ - ds = tens[k]; - if (ndigits < 0 && ilim <= 0) { - S = mhi = 0; - if (ilim < 0 || d <= 5*ds) - goto no_digits; - goto one_digit; - } - for(i = 1;; i++) { - L = (Long) (d / ds); - d -= L*ds; + if (be >= 0 && k <= Int_max) { + /* Yes. */ + ds = tens[k]; + if (ndigits < 0 && ilim <= 0) { + S = mhi = 0; + if (ilim < 0 || d < 5*ds || !biasUp && d == 5*ds) + goto no_digits; + goto one_digit; + } + for(i = 1;; i++) { + L = (Long) (d / ds); + d -= L*ds; #ifdef Check_FLT_ROUNDS - /* If FLT_ROUNDS == 2, L will usually be high by 1 */ - if (d < 0) { - L--; - d += ds; - } + /* If FLT_ROUNDS == 2, L will usually be high by 1 */ + if (d < 0) { + L--; + d += ds; + } #endif - *s++ = '0' + (char)L; - if (i == ilim) { - d += d; - if ((d > ds) || (d == ds && L & 1)) { - bump_up: - while(*--s == '9') - if (s == s0) { - k++; - *s = '0'; - break; - } - ++*s++; - } - break; - } - if (!(d *= 10.)) - break; - } - goto ret1; - } + *s++ = '0' + (char)L; + if (i == ilim) { + d += d; + if ((d > ds) || (d == ds && (L & 1 || biasUp))) { + bump_up: + while(*--s == '9') + if (s == buf) { + k++; + *s = '0'; + break; + } + ++*s++; + } + break; + } + if (!(d *= 10.)) + break; + } + goto ret1; + } - m2 = b2; - m5 = b5; - mhi = mlo = 0; - if (leftright) { - if (mode < 2) { - i = + m2 = b2; + m5 = b5; + mhi = mlo = 0; + if (leftright) { + if (mode < 2) { + i = #ifndef Sudden_Underflow - denorm ? be + (Bias + (P-1) - 1 + 1) : + denorm ? be + (Bias + (P-1) - 1 + 1) : #endif -#ifdef IBM - 1 + 4*P - 3 - bbits + ((bbits + be - 1) & 3); -#else - 1 + P - bbits; -#endif - } - else { - j = ilim - 1; - if (m5 >= j) - m5 -= j; - else { - s5 += j -= m5; - b5 += j; - m5 = 0; - } - if ((i = ilim) < 0) { - m2 -= i; - i = 0; - } - } - b2 += i; - s2 += i; - mhi = i2b(1); - } - if (m2 > 0 && s2 > 0) { - i = m2 < s2 ? m2 : s2; - b2 -= i; - m2 -= i; - s2 -= i; - } - if (b5 > 0) { - if (leftright) { - if (m5 > 0) { - mhi = pow5mult(mhi, m5); - b1 = mult(mhi, b); - Bfree(b); - b = b1; - } - if ((j = b5 - m5) != 0) - b = pow5mult(b, j); - } - else - b = pow5mult(b, b5); - } - S = i2b(1); - if (s5 > 0) - S = pow5mult(S, s5); + 1 + P - bbits; + /* i is 1 plus the number of trailing zero bits in d's significand. Thus, + (2^m2 * 5^m5) / (2^(s2+i) * 5^s5) = (1/2 lsb of d)/10^k. */ + } + else { + j = ilim - 1; + if (m5 >= j) + m5 -= j; + else { + s5 += j -= m5; + b5 += j; + m5 = 0; + } + if ((i = ilim) < 0) { + m2 -= i; + i = 0; + } + /* (2^m2 * 5^m5) / (2^(s2+i) * 5^s5) = (1/2 * 10^(1-ilim))/10^k. */ + } + b2 += i; + s2 += i; + mhi = i2b(1); + /* (mhi * 2^m2 * 5^m5) / (2^s2 * 5^s5) = one-half of last printed (when mode >= 2) or + input (when mode < 2) significant digit, divided by 10^k. */ + } + /* We still have d/10^k = (b * 2^b2 * 5^b5) / (2^s2 * 5^s5). Reduce common factors in + b2, m2, and s2 without changing the equalities. */ + if (m2 > 0 && s2 > 0) { + i = m2 < s2 ? m2 : s2; + b2 -= i; + m2 -= i; + s2 -= i; + } - /* Check for special case that d is a normalized power of 2. */ + /* Fold b5 into b and m5 into mhi. */ + if (b5 > 0) { + if (leftright) { + if (m5 > 0) { + mhi = pow5mult(mhi, m5); + b1 = mult(mhi, b); + Bfree(b); + b = b1; + } + if ((j = b5 - m5) != 0) + b = pow5mult(b, j); + } + else + b = pow5mult(b, b5); + } + /* Now we have d/10^k = (b * 2^b2) / (2^s2 * 5^s5) and + (mhi * 2^m2) / (2^s2 * 5^s5) = one-half of last printed or input significant digit, divided by 10^k. */ - if (mode < 2) { - if (!word1(d) && !(word0(d) & Bndry_mask) + S = i2b(1); + if (s5 > 0) + S = pow5mult(S, s5); + /* Now we have d/10^k = (b * 2^b2) / (S * 2^s2) and + (mhi * 2^m2) / (S * 2^s2) = one-half of last printed or input significant digit, divided by 10^k. */ + + /* Check for special case that d is a normalized power of 2. */ + spec_case = 0; + if (mode < 2) { + if (!word1(d) && !(word0(d) & Bndry_mask) #ifndef Sudden_Underflow - && word0(d) & Exp_mask + && word0(d) & (Exp_mask & Exp_mask << 1) #endif - ) { - /* The special case */ - b2 += Log2P; - s2 += Log2P; - spec_case = 1; - } - else - spec_case = 0; - } + ) { + /* The special case. Here we want to be within a quarter of the last input + significant digit instead of one half of it when the decimal output string's value is less than d. */ + b2 += Log2P; + s2 += Log2P; + spec_case = 1; + } + } - /* Arrange for convenient computation of quotients: - * shift left if necessary so divisor has 4 leading 0 bits. - * - * Perhaps we should just compute leading 28 bits of S once - * and for all and pass them and a shift to quorem, so it - * can do shifts and ors to compute the numerator for q. - */ -#ifdef Pack_32 - if ((i = ((s5 ? 32 - hi0bits(S->x[S->wds-1]) : 1) + s2) & 0x1f) != 0) - i = 32 - i; -#else - if (i = ((s5 ? 32 - hi0bits(S->x[S->wds-1]) : 1) + s2) & 0xf) - i = 16 - i; -#endif - if (i > 4) { - i -= 4; - b2 += i; - m2 += i; - s2 += i; - } - else if (i < 4) { - i += 28; - b2 += i; - m2 += i; - s2 += i; - } - if (b2 > 0) - b = lshift(b, b2); - if (s2 > 0) - S = lshift(S, s2); - if (k_check) { - if (cmp(b,S) < 0) { - k--; - b = multadd(b, 10, 0); /* we botched the k estimate */ - if (leftright) - mhi = multadd(mhi, 10, 0); - ilim = ilim1; - } - } - if (ilim <= 0 && mode > 2) { - if (ilim < 0 || cmp(b,S = multadd(S,5,0)) <= 0) { - /* no digits, fcvt style */ - no_digits: - k = -1 - ndigits; - goto ret; - } - one_digit: - *s++ = '1'; - k++; - goto ret; - } - if (leftright) { - if (m2 > 0) - mhi = lshift(mhi, m2); + /* Arrange for convenient computation of quotients: + * shift left if necessary so divisor has 4 leading 0 bits. + * + * Perhaps we should just compute leading 28 bits of S once + * and for all and pass them and a shift to quorem, so it + * can do shifts and ors to compute the numerator for q. + */ + if ((i = ((s5 ? 32 - hi0bits(S->x[S->wds-1]) : 1) + s2) & 0x1f) != 0) + i = 32 - i; + /* i is the number of leading zero bits in the most significant word of S*2^s2. */ + if (i > 4) { + i -= 4; + b2 += i; + m2 += i; + s2 += i; + } + else if (i < 4) { + i += 28; + b2 += i; + m2 += i; + s2 += i; + } + /* Now S*2^s2 has exactly four leading zero bits in its most significant word. */ + if (b2 > 0) + b = lshift(b, b2); + if (s2 > 0) + S = lshift(S, s2); + /* Now we have d/10^k = b/S and + (mhi * 2^m2) / S = maximum acceptable error, divided by 10^k. */ + if (k_check) { + if (cmp(b,S) < 0) { + k--; + b = multadd(b, 10, 0); /* we botched the k estimate */ + if (leftright) + mhi = multadd(mhi, 10, 0); + ilim = ilim1; + } + } + /* At this point 1 <= d/10^k = b/S < 10. */ - /* Compute mlo -- check for special case - * that d is a normalized power of 2. - */ + if (ilim <= 0 && mode > 2) { + /* We're doing fixed-mode output and d is less than the minimum nonzero output in this mode. + Output either zero or the minimum nonzero output depending on which is closer to d. */ + if (ilim < 0 || (i = cmp(b,S = multadd(S,5,0))) < 0 || i == 0 && !biasUp) { + /* Always emit at least one digit. If the number appears to be zero + using the current mode, then emit one '0' digit and set decpt to 1. */ + /*no_digits: + k = -1 - ndigits; + goto ret; */ + goto no_digits; + } + one_digit: + *s++ = '1'; + k++; + goto ret; + } + if (leftright) { + if (m2 > 0) + mhi = lshift(mhi, m2); - mlo = mhi; - if (spec_case) { - mhi = Balloc(mhi->k); - Bcopy(mhi, mlo); - mhi = lshift(mhi, Log2P); - } + /* Compute mlo -- check for special case + * that d is a normalized power of 2. + */ - for(i = 1;;i++) { - dig = quorem(b,S) + '0'; - /* Do we yet have the shortest decimal string - * that will round to d? - */ - j = cmp(b, mlo); - delta = diff(S, mhi); - j1 = delta->sign ? 1 : cmp(b, delta); - Bfree(delta); + mlo = mhi; + if (spec_case) { + mhi = Balloc(mhi->k); + Bcopy(mhi, mlo); + mhi = lshift(mhi, Log2P); + } + /* mlo/S = maximum acceptable error, divided by 10^k, if the output is less than d. */ + /* mhi/S = maximum acceptable error, divided by 10^k, if the output is greater than d. */ + + for(i = 1;;i++) { + dig = quorem(b,S) + '0'; + /* Do we yet have the shortest decimal string + * that will round to d? + */ + j = cmp(b, mlo); + /* j is b/S compared with mlo/S. */ + delta = diff(S, mhi); + j1 = delta->sign ? 1 : cmp(b, delta); + Bfree(delta); + /* j1 is b/S compared with 1 - mhi/S. */ #ifndef ROUND_BIASED - if (j1 == 0 && !mode && !(word1(d) & 1)) { - if (dig == '9') - goto round_9_up; - if (j > 0) - dig++; - *s++ = (char)dig; - goto ret; - } + if (j1 == 0 && !mode && !(word1(d) & 1)) { + if (dig == '9') + goto round_9_up; + if (j > 0) + dig++; + *s++ = (char)dig; + goto ret; + } #endif - if ((j < 0) || ((j == 0) && (!mode) + if ((j < 0) || (j == 0 && !mode #ifndef ROUND_BIASED - && (!(word1(d) & 1))) + && !(word1(d) & 1) #endif - ) { - if (j1 > 0) { - b = lshift(b, 1); - j1 = cmp(b, S); - if (((j1 > 0) || (j1 == 0 && dig & 1)) - && (dig++ == '9')) - goto round_9_up; - } - *s++ = (char)dig; - goto ret; - } - if (j1 > 0) { - if (dig == '9') { /* possible if i == 1 */ - round_9_up: - *s++ = '9'; - goto roundoff; - } - *s++ = dig + 1; - goto ret; - } - *s++ = (char)dig; - if (i == ilim) - break; - b = multadd(b, 10, 0); - if (mlo == mhi) - mlo = mhi = multadd(mhi, 10, 0); - else { - mlo = multadd(mlo, 10, 0); - mhi = multadd(mhi, 10, 0); - } - } - } - else - for(i = 1;; i++) { - *s++ = (char)(dig = quorem(b,S) + '0'); - if (i >= ilim) - break; - b = multadd(b, 10, 0); - } + )) { + if (j1 > 0) { + /* Either dig or dig+1 would work here as the least significant decimal digit. + Use whichever would produce a decimal value closer to d. */ + b = lshift(b, 1); + j1 = cmp(b, S); + if (((j1 > 0) || (j1 == 0 && (dig & 1 || biasUp))) + && (dig++ == '9')) + goto round_9_up; + } + *s++ = (char)dig; + goto ret; + } + if (j1 > 0) { + if (dig == '9') { /* possible if i == 1 */ + round_9_up: + *s++ = '9'; + goto roundoff; + } + *s++ = dig + 1; + goto ret; + } + *s++ = (char)dig; + if (i == ilim) + break; + b = multadd(b, 10, 0); + if (mlo == mhi) + mlo = mhi = multadd(mhi, 10, 0); + else { + mlo = multadd(mlo, 10, 0); + mhi = multadd(mhi, 10, 0); + } + } + } + else + for(i = 1;; i++) { + *s++ = (char)(dig = quorem(b,S) + '0'); + if (i >= ilim) + break; + b = multadd(b, 10, 0); + } - /* Round off last digit */ + /* Round off last digit */ - b = lshift(b, 1); - j = cmp(b, S); - if ((j > 0) || (j == 0 && dig & 1)) { - roundoff: - while(*--s == '9') - if (s == s0) { - k++; - *s++ = '1'; - goto ret; - } - ++*s++; - } - else { - while(*--s == '0') ; - s++; - } -ret: - Bfree(S); - if (mhi) { - if (mlo && mlo != mhi) - Bfree(mlo); - Bfree(mhi); - } -ret1: - Bfree(b); - *s = 0; - *decpt = k + 1; - strsize = (s - s0) + 1; - if (strsize <= bufsize) { - retval = JS_TRUE; - memcpy(buf, s0, strsize); - if (rve) { - *rve = buf + strsize - 1; - JS_ASSERT(**rve == '\0'); - } - } else { - JS_ASSERT(JS_FALSE); -/* JS_SetError(JS_BUFFER_OVERFLOW_ERROR, 0); */ - retval = JS_FALSE; - } - - /* cleanup */ - result->k = result_k; - result->maxwds = 1 << result_k; - Bfree(result); - - return retval; + b = lshift(b, 1); + j = cmp(b, S); + if ((j > 0) || (j == 0 && (dig & 1 || biasUp))) { + roundoff: + while(*--s == '9') + if (s == buf) { + k++; + *s++ = '1'; + goto ret; + } + ++*s++; + } + else { + /* Strip trailing zeros */ + while(*--s == '0') ; + s++; + } + ret: + Bfree(S); + if (mhi) { + if (mlo && mlo != mhi) + Bfree(mlo); + Bfree(mhi); + } + ret1: + Bfree(b); + JS_ASSERT(s < buf + bufsize); + *s = '\0'; + if (rve) + *rve = s; + *decpt = k + 1; + return JS_TRUE; } -/* -** conversion routines for floating point -** prcsn - number of digits of precision to generate floating -** point value. -** This should be reparameterized so that you can send in a -** prcn for the positive and negative ranges. For now, -** conform to the ECMA JavaScript spec which says numbers -** less than 1e-6 are in scientific notation. -** Also, the ECMA spec says that there should always be a -** '+' or '-' after the 'e' in scientific notation -*/ -JS_FRIEND_API(void) -JS_cnvtf(char *buf, size_t bufsz, int prcsn, double fval) + +/* Mapping of JSDToStrMode -> JS_dtoa mode */ +static const int dtoaModes[] = { + 0, /* DTOSTR_STANDARD */ + 0, /* DTOSTR_STANDARD_EXPONENTIAL, */ + 3, /* DTOSTR_FIXED, */ + 2, /* DTOSTR_EXPONENTIAL, */ + 2}; /* DTOSTR_PRECISION */ + +JS_FRIEND_API(char *) +JS_dtostr(char *buffer, size_t bufferSize, JSDToStrMode mode, int precision, double d) { - intN decpt,sign,numdigits; - char *num, *nump; - char *bufp = buf; - char *endnum; + int decPt; /* Position of decimal point relative to first digit returned by JS_dtoa */ + int sign; /* Nonzero if the sign bit was set in d */ + int nDigits; /* Number of significand digits returned by JS_dtoa */ + char *numBegin = buffer+2; /* Pointer to the digits returned by JS_dtoa; the +2 leaves space for */ + /* the sign and/or decimal point */ + char *numEnd; /* Pointer past the digits returned by JS_dtoa */ - /* If anything fails, we store an empty string in 'buf' */ - num = (char *)MALLOC(bufsz); - if (num == NULL) { - buf[0] = '\0'; - return; - } - /* XXX Why use mode 1? */ - if (JS_dtoa(fval,1,prcsn,&decpt,&sign,&endnum,num,bufsz) - == JS_FALSE) { - buf[0] = '\0'; - goto done; - } - numdigits = endnum - num; - nump = num; + JS_ASSERT(bufferSize >= (size_t)(mode <= DTOSTR_STANDARD_EXPONENTIAL ? DTOSTR_STANDARD_BUFFER_SIZE : + DTOSTR_VARIABLE_BUFFER_SIZE(precision))); - /* If negative and not signed zero and not a NaN, print leading "-". */ - if (sign && - !(word0(fval) == Sign_bit && word1(fval) == 0) && - !((word0(fval) & Exp_mask) == Exp_mask && - (word1(fval) || (word0(fval) & 0xfffff)))) { - *bufp++ = '-'; - } + if (mode == DTOSTR_FIXED && (d >= 1e21 || d <= -1e21)) + mode = DTOSTR_STANDARD; /* Change mode here rather than below because the buffer may not be large enough to hold a large integer. */ - if(decpt == 9999){ - while((*bufp++ = *nump++) != 0) ; - goto done; - } + if (!JS_dtoa(d, dtoaModes[mode], mode >= DTOSTR_FIXED, precision, &decPt, &sign, &numEnd, numBegin, bufferSize-2)) + return 0; - if(decpt > (prcsn+1) || decpt < -(prcsn-1) || decpt < -5){ - *bufp++ = *nump++; - if(numdigits != 1){ - *bufp++ = '.'; - } + nDigits = numEnd - numBegin; - while(*nump != '\0'){ - *bufp++ = *nump++; - } - *bufp++ = 'e'; - JS_snprintf(bufp,bufsz - (bufp - buf), "%+d",decpt-1); - } - else if(decpt >= 0){ - if (decpt == 0){ - *bufp++ = '0'; - } - else { - while(decpt--){ - if(*nump != '\0'){ - *bufp++ = *nump++; - } - else { - *bufp++ = '0'; - } - } - } - if(*nump != '\0'){ - *bufp++ = '.'; - while(*nump != '\0'){ - *bufp++ = *nump++; - } - } - *bufp++ = '\0'; - } - else if(decpt < 0){ - *bufp++ = '0'; - *bufp++ = '.'; - while(decpt++){ - *bufp++ = '0'; - } - - while(*nump != '\0'){ - *bufp++ = *nump++; - } - *bufp++ = '\0'; - } -done: - free(num); + /* If Infinity, -Infinity, or NaN, return the string regardless of the mode. */ + if (decPt != 9999) { + JSBool exponentialNotation = JS_FALSE; + int minNDigits = 0; /* Minimum number of significand digits required by mode and precision */ + char *p; + char *q; + + switch (mode) { + case DTOSTR_STANDARD: + if (decPt < -5 || decPt > 21) + exponentialNotation = JS_TRUE; + else + minNDigits = decPt; + break; + + case DTOSTR_FIXED: + if (precision >= 0) + minNDigits = decPt + precision; + else + minNDigits = decPt; + break; + + case DTOSTR_EXPONENTIAL: + JS_ASSERT(precision > 0); + minNDigits = precision; + /* Fall through */ + case DTOSTR_STANDARD_EXPONENTIAL: + exponentialNotation = JS_TRUE; + break; + + case DTOSTR_PRECISION: + JS_ASSERT(precision > 0); + minNDigits = precision; + if (decPt < -5 || decPt > precision) + exponentialNotation = JS_TRUE; + break; + } + + /* If the number has fewer than minNDigits, pad it with zeros at the end */ + if (nDigits < minNDigits) { + p = numBegin + minNDigits; + nDigits = minNDigits; + do { + *numEnd++ = '0'; + } while (numEnd != p); + *numEnd = '\0'; + } + + if (exponentialNotation) { + /* Insert a decimal point if more than one significand digit */ + if (nDigits != 1) { + numBegin--; + numBegin[0] = numBegin[1]; + numBegin[1] = '.'; + } + JS_snprintf(numEnd, bufferSize - (numEnd - buffer), "e%+d", decPt-1); + } else if (decPt != nDigits) { + /* Some kind of a fraction in fixed notation */ + JS_ASSERT(decPt <= nDigits); + if (decPt > 0) { + /* dd...dd . dd...dd */ + p = --numBegin; + do { + *p = p[1]; + p++; + } while (--decPt); + *p = '.'; + } else { + /* 0 . 00...00dd...dd */ + p = numEnd; + numEnd += 1 - decPt; + q = numEnd; + JS_ASSERT(numEnd < buffer + bufferSize); + *numEnd = '\0'; + while (p != numBegin) + *--q = *--p; + for (p = numBegin + 1; p != q; p++) + *p = '0'; + *numBegin = '.'; + *--numBegin = '0'; + } + } + } + + /* If negative and neither -0.0 nor NaN, output a leading '-'. */ + if (sign && + !(word0(d) == Sign_bit && word1(d) == 0) && + !((word0(d) & Exp_mask) == Exp_mask && + (word1(d) || (word0(d) & Frac_mask)))) { + *--numBegin = '-'; + } + return numBegin; +} + + +/* Let b = floor(b / divisor), and return the remainder. b must be nonnegative. + * divisor must be between 1 and 65536. + * This function cannot run out of memory. */ +static uint32 +divrem(Bigint *b, uint32 divisor) +{ + int32 n = b->wds; + uint32 remainder = 0; + ULong *bx; + ULong *bp; + + JS_ASSERT(divisor > 0 && divisor <= 65536); + + if (!n) + return 0; /* b is zero */ + bx = b->x; + bp = bx + n; + do { + ULong a = *--bp; + ULong dividend = remainder << 16 | a >> 16; + ULong quotientHi = dividend / divisor; + ULong quotientLo; + + remainder = dividend - quotientHi*divisor; + JS_ASSERT(quotientHi <= 0xFFFF && remainder < divisor); + dividend = remainder << 16 | a & 0xFFFF; + quotientLo = dividend / divisor; + remainder = dividend - quotientLo*divisor; + JS_ASSERT(quotientLo <= 0xFFFF && remainder < divisor); + *bp = quotientHi << 16 | quotientLo; + } while (bp != bx); + /* Decrease the size of the number if its most significant word is now zero. */ + if (bx[n-1] == 0) + b->wds--; + return remainder; +} + + +/* "-0.0000...(1073 zeros after decimal point)...0001\0" is the longest string that we could produce, + * which occurs when printing -5e-324 in binary. We could compute a better estimate of the size of + * the output string and malloc fewer bytes depending on d and base, but why bother? */ +#define DTOBASESTR_BUFFER_SIZE 1078 +#define BASEDIGIT(digit) ((char)(((digit) >= 10) ? 'a' - 10 + (digit) : '0' + (digit))) + +JS_FRIEND_API(char *) +JS_dtobasestr(int base, double d) +{ + char *buffer; /* The output string */ + char *p; /* Pointer to current position in the buffer */ + char *pInt; /* Pointer to the beginning of the integer part of the string */ + char *q; + uint32 digit; + double di; /* d truncated to an integer */ + double df; /* The fractional part of d */ + + JS_ASSERT(base >= 2 && base <= 36); + + buffer = malloc(DTOBASESTR_BUFFER_SIZE); + if (buffer) { + p = buffer; + if (d < 0.0 +#ifdef XP_PC + && !((word0(d) & Exp_mask) == Exp_mask && ((word0(d) & Frac_mask) || word1(d))) /* Visual C++ doesn't know how to compare against NaN */ +#endif + ) { + *p++ = '-'; + d = -d; + } + + /* Check for Infinity and NaN */ + if ((word0(d) & Exp_mask) == Exp_mask) { + strcpy(p, !word1(d) && !(word0(d) & Frac_mask) ? "Infinity" : "NaN"); + return buffer; + } + + /* Output the integer part of d with the digits in reverse order. */ + pInt = p; + di = fd_floor(d); + if (di <= 4294967295.0) { + uint32 n = (uint32)di; + if (n) + do { + uint32 m = n / base; + digit = n - m*base; + n = m; + JS_ASSERT(digit < (uint32)base); + *p++ = BASEDIGIT(digit); + } while (n); + else *p++ = '0'; + } else { + /* XXX We really should check for null here, but none of the routines we call is out-of-memory-safe, + * so this change would need to be made pervasively in this file. */ + int32 e; + int32 bits; /* Number of significant bits in di; not used. */ + Bigint *b = d2b(di, &e, &bits); + b = lshift(b, e); + do { + digit = divrem(b, base); + JS_ASSERT(digit < (uint32)base); + *p++ = BASEDIGIT(digit); + } while (b->wds); + Bfree(b); + } + /* Reverse the digits of the integer part of d. */ + q = p-1; + while (q > pInt) { + char ch = *pInt; + *pInt++ = *q; + *q-- = ch; + } + + df = d - di; + if (df != 0.0) { + /* We have a fraction. */ + int32 e, bbits, s2, done; + Bigint *b, *s, *mlo, *mhi; + + *p++ = '.'; + b = d2b(df, &e, &bbits); + JS_ASSERT(e < 0); + /* At this point df = b * 2^e. e must be less than zero because 0 < df < 1. */ + + s2 = -(int32)(word0(d) >> Exp_shift1 & Exp_mask>>Exp_shift1); +#ifndef Sudden_Underflow + if (!s2) + s2 = -1; +#endif + s2 += Bias + P; + /* 1/2^s2 = (nextDouble(d) - d)/2 */ + JS_ASSERT(-s2 < e); + mlo = i2b(1); + mhi = mlo; + if (!word1(d) && !(word0(d) & Bndry_mask) +#ifndef Sudden_Underflow + && word0(d) & (Exp_mask & Exp_mask << 1) +#endif + ) { + /* The special case. Here we want to be within a quarter of the last input + significant digit instead of one half of it when the output string's value is less than d. */ + s2 += Log2P; + mhi = i2b(1< df = b/2^s2 > 0; + * (d - prevDouble(d))/2 = mlo/2^s2; + * (nextDouble(d) - d)/2 = mhi/2^s2. */ + + done = JS_FALSE; + do { + int32 j, j1; + Bigint *delta; + + b = multadd(b, base, 0); + digit = quorem2(b, s2); + if (mlo == mhi) + mlo = mhi = multadd(mlo, base, 0); + else { + mlo = multadd(mlo, base, 0); + mhi = multadd(mhi, base, 0); + } + + /* Do we yet have the shortest string that will round to d? */ + j = cmp(b, mlo); + /* j is b/2^s2 compared with mlo/2^s2. */ + delta = diff(s, mhi); + j1 = delta->sign ? 1 : cmp(b, delta); + Bfree(delta); + /* j1 is b/2^s2 compared with 1 - mhi/2^s2. */ + +#ifndef ROUND_BIASED + if (j1 == 0 && !(word1(d) & 1)) { + if (j > 0) + digit++; + done = JS_TRUE; + } else +#endif + if (j < 0 || (j == 0 +#ifndef ROUND_BIASED + && !(word1(d) & 1) +#endif + )) { + if (j1 > 0) { + /* Either dig or dig+1 would work here as the least significant digit. + Use whichever would produce an output value closer to d. */ + b = lshift(b, 1); + j1 = cmp(b, s); + if (j1 > 0) /* The even test (|| (j1 == 0 && (digit & 1))) is not here because it messes up odd base output + * such as 3.5 in base 3. */ + digit++; + } + done = JS_TRUE; + } else if (j1 > 0) { + digit++; + done = JS_TRUE; + } + JS_ASSERT(digit < (uint32)base); + *p++ = BASEDIGIT(digit); + } while (!done); + Bfree(b); + Bfree(s); + if (mlo != mhi) + Bfree(mlo); + Bfree(mhi); + } + JS_ASSERT(p < buffer + DTOBASESTR_BUFFER_SIZE); + *p = '\0'; + } + return buffer; } diff --git a/mozilla/js/src/jsdtoa.h b/mozilla/js/src/jsdtoa.h index dfb81efd493..97065a6d16d 100644 --- a/mozilla/js/src/jsdtoa.h +++ b/mozilla/js/src/jsdtoa.h @@ -41,13 +41,57 @@ JS_FRIEND_API(double) JS_strtod(const char *s00, char **se); /* - * JS_cnvtf() - * conversion routines for floating point - * prcsn - number of digits of precision to generate floating - * point value. + * Modes for converting floating-point numbers to strings. + * + * Some of the modes can round-trip; this means that if the number is converted to + * a string using one of these mode and then converted back to a number, the result + * will be identical to the original number (except that, due to ECMA, -0 will get converted + * to +0). These round-trip modes return the minimum number of significand digits that + * permit the round trip. + * + * Some of the modes take an integer parameter . */ -JS_FRIEND_API(void) -JS_cnvtf(char *buf, size_t bufsz, int prcsn, double dval); +/* NB: Keep this in sync with number_constants[]. */ +typedef enum JSDToStrMode { + DTOSTR_STANDARD, /* Either fixed or exponential format; round-trip */ + DTOSTR_STANDARD_EXPONENTIAL, /* Always exponential format; round-trip */ + DTOSTR_FIXED, /* Round to digits after the decimal point; exponential if number is large */ + DTOSTR_EXPONENTIAL, /* Always exponential format; significant digits */ + DTOSTR_PRECISION /* Either fixed or exponential format; significant digits */ +} JSDToStrMode; + + +/* Maximum number of characters (including trailing null) that a DTOSTR_STANDARD or DTOSTR_STANDARD_EXPONENTIAL + * conversion can produce. This maximum is reached for a number like -1.2345678901234567e+123. */ +#define DTOSTR_STANDARD_BUFFER_SIZE 25 + +/* Maximum number of characters (including trailing null) that one of the other conversions + * can produce. This maximum is reached for TO_FIXED, which can generate up to 21 digits before the decimal point. */ +#define DTOSTR_VARIABLE_BUFFER_SIZE(precision) ((precision)+24 > DTOSTR_STANDARD_BUFFER_SIZE ? (precision)+24 : DTOSTR_STANDARD_BUFFER_SIZE) + +/* + * Convert dval according to the given mode and return a pointer to the resulting ASCII string. + * The result is held somewhere in buffer, but not necessarily at the beginning. The size of + * buffer is given in bufferSize, and must be at least as large as given by the above macros. + * + * Return NULL if out of memory. + */ +JS_FRIEND_API(char *) +JS_dtostr(char *buffer, size_t bufferSize, JSDToStrMode mode, int precision, double dval); + +/* + * Convert d to a string in the given base. The integral part of d will be printed exactly + * in that base, regardless of how large it is, because there is no exponential notation for non-base-ten + * numbers. The fractional part will be rounded to as few digits as possible while still preserving + * the round-trip property (analogous to that of printing decimal numbers). In other words, if one were + * to read the resulting string in via a hypothetical base-number-reading routine that rounds to the nearest + * IEEE double (and to an even significand if there are two equally near doubles), then the result would + * equal d (except for -0.0, which converts to "0", and NaN, which is not equal to itself). + * + * Return NULL if out of memory. If the result is not NULL, it must be released via free(). + */ +JS_FRIEND_API(char *) +JS_dtobasestr(int base, double d); JS_END_EXTERN_C diff --git a/mozilla/js/src/jsnum.c b/mozilla/js/src/jsnum.c index 83712aceb54..ab324b3f5b9 100644 --- a/mozilla/js/src/jsnum.c +++ b/mozilla/js/src/jsnum.c @@ -29,17 +29,17 @@ #include #include "jstypes.h" #include "jsutil.h" /* Added by JSIFY */ -#include "jsdtoa.h" -#include "jsprf.h" #include "jsapi.h" #include "jsatom.h" #include "jscntxt.h" #include "jsconfig.h" +#include "jsdtoa.h" #include "jsgc.h" #include "jsinterp.h" #include "jsnum.h" #include "jsobj.h" #include "jsopcode.h" +#include "jsprf.h" #include "jsstr.h" union dpun { @@ -170,21 +170,21 @@ num_toSource(JSContext *cx, JSObject *obj, uintN argc, jsval *argv, jsval *rval) { jsval v; jsdouble d; - size_t i; + char numBuf[DTOSTR_STANDARD_BUFFER_SIZE], *numStr; char buf[64]; JSString *str; if (!JS_InstanceOf(cx, obj, &number_class, argv)) return JS_FALSE; v = OBJ_GET_SLOT(cx, obj, JSSLOT_PRIVATE); - if (!JSVAL_IS_NUMBER(v)) - return js_obj_toSource(cx, obj, argc, argv, rval); + JS_ASSERT(JSVAL_IS_NUMBER(v)); d = JSVAL_IS_INT(v) ? (jsdouble)JSVAL_TO_INT(v) : *JSVAL_TO_DOUBLE(v); - i = JS_snprintf(buf, sizeof buf, "(new %s(", number_class.name); - - JS_cnvtf(buf + i, sizeof buf - i, 20, d); - i = strlen(buf); - JS_snprintf(buf + i, sizeof buf - i, "))"); + numStr = JS_dtostr(numBuf, sizeof numBuf, DTOSTR_STANDARD, 0, d); + if (!numStr) { + JS_ReportOutOfMemory(cx); + return JS_FALSE; + } + JS_snprintf(buf, sizeof buf, "(new %s(%s))", number_class.name, numStr); str = JS_NewStringCopyZ(cx, buf); if (!str) return JS_FALSE; @@ -198,17 +198,15 @@ num_toString(JSContext *cx, JSObject *obj, uintN argc, jsval *argv, jsval *rval) { jsval v; jsdouble d; - jsint base, dval; - unsigned int ival; - char *bp, buf[32]; + jsint base; JSString *str; if (!JS_InstanceOf(cx, obj, &number_class, argv)) return JS_FALSE; v = OBJ_GET_SLOT(cx, obj, JSSLOT_PRIVATE); - if (!JSVAL_IS_NUMBER(v)) - return js_obj_toString(cx, obj, argc, argv, rval); + JS_ASSERT(JSVAL_IS_NUMBER(v)); d = JSVAL_IS_INT(v) ? (jsdouble)JSVAL_TO_INT(v) : *JSVAL_TO_DOUBLE(v); + base = 10; if (argc != 0) { if (!js_ValueToECMAInt32(cx, argv[0], &base)) return JS_FALSE; @@ -219,30 +217,17 @@ num_toString(JSContext *cx, JSObject *obj, uintN argc, jsval *argv, jsval *rval) numBuf); return JS_FALSE; } - if (base != 10 && JSDOUBLE_IS_FINITE(d)) { - JSBool isNegative = (d < 0); - if (isNegative) - d = -d; - ival = (unsigned int) js_DoubleToInteger(d); - bp = buf + sizeof buf; - for (*--bp = '\0'; ival != 0 && bp > buf; ival /= base) { - dval = ival % base; - *--bp = (char)((dval >= 10) ? 'a' - 10 + dval : '0' + dval); - } - if (*bp == '\0') - *--bp = '0'; - if (isNegative) - if (bp > buf) - *--bp = '-'; - else - /* sacrifice the leading digit or lose the '-' ?*/ - *bp = '-'; - str = JS_NewStringCopyZ(cx, bp); - } else { - str = js_NumberToString(cx, d); - } - } else { + } + if (base == 10) str = js_NumberToString(cx, d); + else { + char *dStr = JS_dtobasestr(base, d); + if (!dStr) { + JS_ReportOutOfMemory(cx); + return JS_FALSE; + } + str = JS_NewStringCopyZ(cx, dStr); + free(dStr); } if (!str) return JS_FALSE; @@ -259,12 +244,88 @@ num_valueOf(JSContext *cx, JSObject *obj, uintN argc, jsval *argv, jsval *rval) return JS_TRUE; } + +#if JS_HAS_NUMBER_FORMATS +#define MAX_PRECISION 100 + +static JSBool +num_to(JSContext *cx, JSObject *obj, uintN argc, jsval *argv, jsval *rval, JSDToStrMode zeroArgMode, + JSDToStrMode oneArgMode, jsint precisionMin, jsint precisionMax, jsint precisionOffset) +{ + jsval v; + jsdouble d, precision; + JSString *str; + char buf[DTOSTR_VARIABLE_BUFFER_SIZE(MAX_PRECISION+1)], *numStr; /* Use MAX_PRECISION+1 because precisionOffset can be 1 */ + + if (!JS_InstanceOf(cx, obj, &number_class, argv)) + return JS_FALSE; + v = OBJ_GET_SLOT(cx, obj, JSSLOT_PRIVATE); + JS_ASSERT(JSVAL_IS_NUMBER(v)); + d = JSVAL_IS_INT(v) ? (jsdouble)JSVAL_TO_INT(v) : *JSVAL_TO_DOUBLE(v); + + if (JSVAL_IS_VOID(argv[0])) { + precision = 0.0; + oneArgMode = zeroArgMode; + } else { + if (!js_ValueToNumber(cx, argv[0], &precision)) + return JS_FALSE; + precision = js_DoubleToInteger(precision); + } + if (precision < precisionMin || precision > precisionMax) { + numStr = JS_dtostr(buf, sizeof buf, DTOSTR_STANDARD, 0, precision); + if (!numStr) + JS_ReportOutOfMemory(cx); + else + JS_ReportErrorNumber(cx, js_GetErrorMessage, NULL, JSMSG_PRECISION_RANGE, numStr); + return JS_FALSE; + } + + numStr = JS_dtostr(buf, sizeof buf, oneArgMode, (jsint)precision + precisionOffset, d); + if (!numStr) { + JS_ReportOutOfMemory(cx); + return JS_FALSE; + } + str = JS_NewStringCopyZ(cx, numStr); + if (!str) + return JS_FALSE; + *rval = STRING_TO_JSVAL(str); + return JS_TRUE; +} + +static JSBool +num_toFixed(JSContext *cx, JSObject *obj, uintN argc, jsval *argv, jsval *rval) +{ + /* We allow a larger range of precision than ECMA requires; this is permitted by ECMA. */ + return num_to(cx, obj, argc, argv, rval, DTOSTR_FIXED, DTOSTR_FIXED, -20, MAX_PRECISION, 0); +} + +static JSBool +num_toExponential(JSContext *cx, JSObject *obj, uintN argc, jsval *argv, jsval *rval) +{ + /* We allow a larger range of precision than ECMA requires; this is permitted by ECMA. */ + return num_to(cx, obj, argc, argv, rval, DTOSTR_STANDARD_EXPONENTIAL, DTOSTR_EXPONENTIAL, 0, MAX_PRECISION, 1); +} + +static JSBool +num_toPrecision(JSContext *cx, JSObject *obj, uintN argc, jsval *argv, jsval *rval) +{ + /* We allow a larger range of precision than ECMA requires; this is permitted by ECMA. */ + return num_to(cx, obj, argc, argv, rval, DTOSTR_STANDARD, DTOSTR_PRECISION, 1, MAX_PRECISION, 0); +} +#endif /* JS_HAS_NUMBER_FORMATS */ + + static JSFunctionSpec number_methods[] = { #if JS_HAS_TOSOURCE - {js_toSource_str, num_toSource, 0}, + {js_toSource_str, num_toSource, 0}, +#endif + {js_toString_str, num_toString, 0}, + {js_valueOf_str, num_valueOf, 0}, +#if JS_HAS_NUMBER_FORMATS + {"toFixed", num_toFixed, 1}, + {"toExponential", num_toExponential, 1}, + {"toPrecision", num_toPrecision, 1}, #endif - {js_toString_str, num_toString, 0}, - {js_valueOf_str, num_valueOf, 0}, {0} }; @@ -284,7 +345,7 @@ enum nc_slot { * using union dpun. */ static JSConstDoubleSpec number_constants[] = { - {0, "NaN"}, + {0, js_NaN_str}, {0, "POSITIVE_INFINITY"}, {0, "NEGATIVE_INFINITY"}, {1.7976931348623157E+308, "MAX_VALUE"}, @@ -360,7 +421,7 @@ js_InitNumberClass(JSContext *cx, JSObject *obj) return NULL; /* ECMA 15.1.1.1 */ - if (!JS_DefineProperty(cx, obj, "NaN", DOUBLE_TO_JSVAL(rt->jsNaN), + if (!JS_DefineProperty(cx, obj, js_NaN_str, DOUBLE_TO_JSVAL(rt->jsNaN), NULL, NULL, 0)) { return NULL; } @@ -435,19 +496,23 @@ js_NumberToObject(JSContext *cx, jsdouble d) return obj; } -/* XXXbe rewrite me to be ECMA-based! */ JSString * js_NumberToString(JSContext *cx, jsdouble d) { jsint i; - char buf[32]; + char buf[DTOSTR_STANDARD_BUFFER_SIZE]; + char *numStr = buf; - if (JSDOUBLE_IS_INT(d, i)) { + if (JSDOUBLE_IS_INT(d, i)) JS_snprintf(buf, sizeof buf, "%ld", (long)i); - } else { - JS_cnvtf(buf, sizeof buf, 20, d); + else { + numStr = JS_dtostr(buf, sizeof buf, DTOSTR_STANDARD, 0, d); + if (!numStr) { + JS_ReportOutOfMemory(cx); + return NULL; + } } - return JS_NewStringCopyZ(cx, buf); + return JS_NewStringCopyZ(cx, numStr); } JSBool