/* -*- Mode: C++; tab-width: 4; indent-tabs-mode: nil; c-basic-offset: 4 -*- * * The contents of this file are subject to the Netscape Public * License Version 1.1 (the "License"); you may not use this file * except in compliance with the License. You may obtain a copy of * the License at http://www.mozilla.org/NPL/ * * Software distributed under the License is distributed on an "AS * IS" basis, WITHOUT WARRANTY OF ANY KIND, either express or * implied. See the License for the specific language governing * rights and limitations under the License. * * The Original Code is the JavaScript 2 Prototype. * * The Initial Developer of the Original Code is Netscape * Communications Corporation. Portions created by Netscape are * Copyright (C) 1998 Netscape Communications Corporation. All * Rights Reserved. * * Contributor(s): * * Alternatively, the contents of this file may be used under the * terms of the GNU Public License (the "GPL"), in which case the * provisions of the GPL are applicable instead of those above. * If you wish to allow use of your version of this file only * under the terms of the GPL and not to allow others to use your * version of this file under the NPL, indicate your decision by * deleting the provisions above and replace them with the notice * and other provisions required by the GPL. If you do not delete * the provisions above, a recipient may use your version of this * file under either the NPL or the GPL. */ #ifdef _WIN32 // Turn off warnings about identifiers too long in browser information #pragma warning(disable: 4786) #pragma warning(disable: 4711) #pragma warning(disable: 4710) #endif #include #include "parser.h" #include "numerics.h" #include "js2runtime.h" #include "jslong.h" #include "prmjtime.h" #include "jsmath.h" #include "fdlibm_ns.h" namespace JavaScript { namespace JS2Runtime { #ifndef M_E #define M_E 2.7182818284590452354 #endif #ifndef M_LOG2E #define M_LOG2E 1.4426950408889634074 #endif #ifndef M_LOG10E #define M_LOG10E 0.43429448190325182765 #endif #ifndef M_LN2 #define M_LN2 0.69314718055994530942 #endif #ifndef M_LN10 #define M_LN10 2.30258509299404568402 #endif #ifndef M_PI #define M_PI 3.14159265358979323846 #endif #ifndef M_SQRT2 #define M_SQRT2 1.41421356237309504880 #endif #ifndef M_SQRT1_2 #define M_SQRT1_2 0.70710678118654752440 #endif #define M_CONSTANTS_COUNT 8 static js2val Math_abs(Context *cx, const js2val /*thisValue*/, js2val *argv, uint32 argc) { if (argc == 0) return kNaNValue; else return JSValue::newNumber(fd::fabs(JSValue::f64(JSValue::toNumber(cx, argv[0])))); } static js2val Math_acos(Context *cx, const js2val /*thisValue*/, js2val *argv, uint32 argc) { if (argc == 0) return kNaNValue; return JSValue::newNumber(fd::acos(JSValue::f64(JSValue::toNumber(cx, argv[0])))); } static js2val Math_asin(Context *cx, const js2val /*thisValue*/, js2val *argv, uint32 argc) { if (argc == 0) return kNaNValue; return JSValue::newNumber(fd::asin(JSValue::f64(JSValue::toNumber(cx, argv[0])))); } static js2val Math_atan(Context *cx, const js2val /*thisValue*/, js2val *argv, uint32 argc) { if (argc == 0) return kNaNValue; return JSValue::newNumber(fd::atan(JSValue::f64(JSValue::toNumber(cx, argv[0])))); } static js2val Math_atan2(Context *cx, const js2val /*thisValue*/, js2val *argv, uint32 argc) { if (argc <= 1) return kNaNValue; float64 y = JSValue::f64(JSValue::toNumber(cx, argv[0])); float64 x = JSValue::f64(JSValue::toNumber(cx, argv[1])); return JSValue::newNumber(fd::atan2(y, x)); } static js2val Math_ceil(Context *cx, const js2val /*thisValue*/, js2val *argv, uint32 argc) { if (argc == 0) return kNaNValue; return JSValue::newNumber(fd::ceil(JSValue::f64(JSValue::toNumber(cx, argv[0])))); } static js2val Math_cos(Context *cx, const js2val /*thisValue*/, js2val *argv, uint32 argc) { if (argc == 0) return kNaNValue; return JSValue::newNumber(fd::cos(JSValue::f64(JSValue::toNumber(cx, argv[0])))); } static js2val Math_exp(Context *cx, const js2val /*thisValue*/, js2val *argv, uint32 argc) { if (argc == 0) return kNaNValue; return JSValue::newNumber(fd::exp(JSValue::f64(JSValue::toNumber(cx, argv[0])))); } static js2val Math_floor(Context *cx, const js2val /*thisValue*/, js2val *argv, uint32 argc) { if (argc == 0) return kNaNValue; else return JSValue::newNumber(fd::floor(JSValue::f64(JSValue::toNumber(cx, argv[0])))); } static js2val Math_log(Context *cx, const js2val /*thisValue*/, js2val *argv, uint32 argc) { if (argc == 0) return kNaNValue; return JSValue::newNumber(fd::log(JSValue::f64(JSValue::toNumber(cx, argv[0])))); } static js2val Math_max(Context *cx, const js2val /*thisValue*/, js2val *argv, uint32 argc) { if (argc == 0) return kNegativeInfinity; float64 result = JSValue::f64(JSValue::toNumber(cx, argv[0])); if (JSDOUBLE_IS_NaN(result)) return kNaNValue; for (uint32 i = 1; i < argc; ++i) { float64 arg = JSValue::f64(JSValue::toNumber(cx, argv[i])); if (JSDOUBLE_IS_NaN(arg)) return kNaNValue; if (arg > result) result = arg; } return JSValue::newNumber(result); } static js2val Math_min(Context *cx, const js2val /*thisValue*/, js2val *argv, uint32 argc) { if (argc == 0) return kPositiveInfinity; float64 result = JSValue::f64(JSValue::toNumber(cx, argv[0])); if (JSDOUBLE_IS_NaN(result)) return kNaNValue; for (uint32 i = 1; i < argc; ++i) { float64 arg = JSValue::f64(JSValue::toNumber(cx, argv[i])); if (JSDOUBLE_IS_NaN(arg)) return kNaNValue; if ((arg < result) || (JSDOUBLE_IS_POSZERO(result) && JSDOUBLE_IS_NEGZERO(arg))) result = arg; } return JSValue::newNumber(result); } static js2val Math_pow(Context *cx, const js2val /*thisValue*/, js2val *argv, uint32 argc) { if (argc < 1) return kNaNValue; return JSValue::newNumber(fd::pow(JSValue::f64(JSValue::toNumber(cx, argv[0])), JSValue::f64(JSValue::toNumber(cx, argv[1])))); } /* * Math.random() support, lifted from java.util.Random.java. */ static void random_setSeed(Context *cx, int64 seed) { int64 tmp; JSLL_I2L(tmp, 1000); JSLL_DIV(seed, seed, tmp); JSLL_XOR(tmp, seed, cx->mWorld.rngMultiplier); JSLL_AND(cx->mWorld.rngSeed, tmp, cx->mWorld.rngMask); } static void random_init(Context *cx) { int64 tmp, tmp2; /* Do at most once. */ if (cx->mWorld.rngInitialized) return; cx->mWorld.rngInitialized = true; /* cx->mWorld.rngMultiplier = 0x5DEECE66DL */ JSLL_ISHL(tmp, 0x5D, 32); JSLL_UI2L(tmp2, 0xEECE66DL); JSLL_OR(cx->mWorld.rngMultiplier, tmp, tmp2); /* cx->mWorld.rngAddend = 0xBL */ JSLL_I2L(cx->mWorld.rngAddend, 0xBL); /* cx->mWorld.rngMask = (1L << 48) - 1 */ JSLL_I2L(tmp, 1); JSLL_SHL(tmp2, tmp, 48); JSLL_SUB(cx->mWorld.rngMask, tmp2, tmp); /* cx->mWorld.rngDscale = (jsdouble)(1L << 54) */ JSLL_SHL(tmp2, tmp, 54); JSLL_L2D(cx->mWorld.rngDscale, tmp2); /* Finally, set the seed from current time. */ random_setSeed(cx, PRMJ_Now()); } static uint32 random_next(Context *cx, int bits) { int64 nextseed, tmp; uint32 retval; JSLL_MUL(nextseed, cx->mWorld.rngSeed, cx->mWorld.rngMultiplier); JSLL_ADD(nextseed, nextseed, cx->mWorld.rngAddend); JSLL_AND(nextseed, nextseed, cx->mWorld.rngMask); cx->mWorld.rngSeed = nextseed; JSLL_USHR(tmp, nextseed, 48 - bits); JSLL_L2I(retval, tmp); return retval; } static float64 random_nextDouble(Context *cx) { int64 tmp, tmp2; float64 d; JSLL_ISHL(tmp, random_next(cx, 27), 27); JSLL_UI2L(tmp2, random_next(cx, 27)); JSLL_ADD(tmp, tmp, tmp2); JSLL_L2D(d, tmp); return d / cx->mWorld.rngDscale; } static js2val Math_random(Context *cx, const js2val /*thisValue*/, js2val *argv, uint32 /*argc*/) { random_init(cx); return JSValue::newNumber(random_nextDouble(cx)); } static js2val Math_round(Context *cx, const js2val /*thisValue*/, js2val *argv, uint32 argc) { if (argc == 0) return kNaNValue; float64 x = JSValue::f64(JSValue::toNumber(cx, argv[0])); return JSValue::newNumber( fd::copysign( fd::floor(x + 0.5), x ) ); } static js2val Math_sin(Context *cx, const js2val /*thisValue*/, js2val *argv, uint32 argc) { if (argc == 0) return kNaNValue; return JSValue::newNumber(fd::sin(JSValue::f64(JSValue::toNumber(cx, argv[0])))); } static js2val Math_sqrt(Context *cx, const js2val /*thisValue*/, js2val *argv, uint32 argc) { if (argc == 0) return kNaNValue; return JSValue::newNumber(fd::sqrt(JSValue::f64(JSValue::toNumber(cx, argv[0])))); } static js2val Math_tan(Context *cx, const js2val /*thisValue*/, js2val *argv, uint32 argc) { if (argc == 0) return kNaNValue; return JSValue::newNumber(fd::tan(JSValue::f64(JSValue::toNumber(cx, argv[0])))); } struct { char *name; float64 value; } MathObjectConstants[M_CONSTANTS_COUNT] = { { "E", M_E }, { "LOG2E", M_LOG2E }, { "LOG10E", M_LOG10E }, { "LN2", M_LN2 }, { "LN10", M_LN10 }, { "PI", M_PI }, { "SQRT2", M_SQRT2 }, { "SQRT1_2",M_SQRT1_2 } }; struct MathObjectFunctionDef { char *name; JSFunction::NativeCode *imp; uint32 length; } MathObjectFunctions[] = { { "abs", Math_abs, 1 }, { "acos", Math_acos, 1 }, { "asin", Math_asin, 1 }, { "atan", Math_atan, 1 }, { "atan2", Math_atan2, 2 }, { "ceil", Math_ceil, 1 }, { "cos", Math_cos, 1 }, { "exp", Math_exp, 1 }, { "floor", Math_floor, 1 }, { "log", Math_log, 1 }, { "max", Math_max, 2 }, { "min", Math_min, 2 }, { "pow", Math_pow, 2 }, { "random", Math_random, 1 }, { "round", Math_round, 1 }, { "sin", Math_sin, 1 }, { "sqrt", Math_sqrt, 1 }, { "tan", Math_tan, 1 }, }; void initMathObject(Context *cx, JSObject *mathObj) { uint32 i; for (i = 0; i < M_CONSTANTS_COUNT; i++) mathObj->defineVariable(cx, widenCString(MathObjectConstants[i].name), (NamespaceList *)(NULL), Property::ReadOnly | Property::DontDelete, Number_Type, JSValue::newNumber(MathObjectConstants[i].value)); for (i = 0; i < sizeof(MathObjectFunctions) / sizeof(MathObjectFunctionDef); i++) { JSFunction *f = new JSFunction(cx, MathObjectFunctions[i].imp, Number_Type, NULL); f->setParameterCounts(cx, MathObjectFunctions[i].length, 0, 0, false); mathObj->defineVariable(cx, widenCString(MathObjectFunctions[i].name), (NamespaceList *)(NULL), Property::ReadOnly | Property::DontDelete, Number_Type, JSValue::newFunction(f)); } } } }