// -*- Mode: C++; tab-width: 4; indent-tabs-mode: nil; c-basic-offset: 4 -*- // // The contents of this file are subject to the Netscape Public // License Version 1.1 (the "License"); you may not use this file // except in compliance with the License. You may obtain a copy of // the License at http://www.mozilla.org/NPL/ // // Software distributed under the License is distributed on an "AS // IS" basis, WITHOUT WARRANTY OF ANY KIND, either express oqr // implied. See the License for the specific language governing // rights and limitations under the License. // // The Original Code is the JavaScript 2 Prototype. // // The Initial Developer of the Original Code is Netscape // Communications Corporation. Portions created by Netscape are // Copyright (C) 1998 Netscape Communications Corporation. All // Rights Reserved. #include "interpreter.h" #include "world.h" #include namespace JavaScript { using std::map; using std::less; using std::pair; /** * Private representation of a JavaScript object. * This will change over time, so it is treated as an opaque * type everywhere else but here. */ #if defined(XP_MAC) // copied from default template parameters in map. typedef gc_allocator > gc_map_allocator; #elif defined(XP_UNIX) // FIXME: in libg++, they assume the map's allocator is a byte allocator, // which is wrapped in a simple_allocator. this is crap. typedef char _Char[1]; typedef gc_allocator<_Char> gc_map_allocator; #elif defined(_WIN32) // FIXME: MSVC++'s notion. this is why we had to add _Charalloc(). typedef gc_allocator gc_map_allocator; #endif class JSObject : public map, gc_map_allocator> { public: void* operator new(size_t) { return alloc.allocate(1, 0); } void operator delete(void* /* ptr */) {} private: static gc_allocator alloc; }; /** * Private representation of a JavaScript array. */ class JSArray : public JSObject { public: void* operator new(size_t) { return alloc.allocate(1, 0); } JSArray() : elements(1) {} JSArray(uint32 size) : elements(size) {} JSArray(const JSValues &v) : elements(v) {} uint32 length() { return elements.size(); } JSValue& operator[](const JSValue& index) { // for now, we can only handle f64 index values. uint32 n = (uint32)index.f64; // obviously, a sparse representation might be better. uint32 size = elements.size(); if (n >= size) resize(n, size); return elements[n]; } JSValue& operator[](uint32 n) { // obviously, a sparse representation might be better. uint32 size = elements.size(); if (n >= size) resize(n, size); return elements[n]; } void resize(uint32 size) { elements.resize(size); } private: void resize(uint32 n, uint32 size) { do { size *= 2; } while (n >= size); elements.resize(size); } private: JSValues elements; static gc_allocator alloc; }; // static allocator (required when gc_allocator is allocator. gc_allocator JSObject::alloc; gc_allocator JSArray::alloc; // operand access macros. #define op1(i) (i->itsOperand1) #define op2(i) (i->itsOperand2) #define op3(i) (i->itsOperand3) // mnemonic names for operands. #define dst(i) op1(i) #define src1(i) op2(i) #define src2(i) op3(i) template class GCObject { public: void* operator new(size_t) { return alloc.allocate(1, 0); } void operator delete(void* /* ptr */) {} private: static gc_allocator alloc; }; template gc_allocator GCObject::alloc; struct Frame : public GCObject { // Stores saved state from the *previous* activation, the current activation is alive // and well in locals of the interpreter loop. Frame(InstructionIterator returnPC, InstructionIterator basePC, JSArray *registers, JSArray *variables, Register result) : itsReturnPC(returnPC), itsBasePC(basePC), itsRegisters(registers), itsVariables(variables), itsResult(result) { } InstructionIterator itsReturnPC; InstructionIterator itsBasePC; JSArray *itsRegisters; // rather not save these BUT: // - switch temps (and others eventually?) are live across statments // and need to be preserved. // - better debugging if intermediate state can be recovered (?) JSArray *itsVariables; Register itsResult; // the desired target register for the return value }; static JSObject globals; void addGlobalProperty(String name,JSValue value) { globals[name] = value; } JSValue interpret(ICodeModule* iCode, const JSValues& args) { std::vector stack; JSArray *locals = new JSArray(args); // ensure that frame is large enough. uint32 frameSize = iCode->itsMaxVariable + 1; if (frameSize > locals->size()) locals->resize(frameSize); JSArray *registers = new JSArray(iCode->itsMaxRegister + 1); InstructionIterator begin_pc = iCode->its_iCode->begin(); InstructionIterator pc = begin_pc; while (true) { Instruction* instruction = *pc; switch (instruction->opcode()) { case CALL: { Call* call = static_cast(instruction); JSArray *previousRegisters = registers; stack.push_back(new Frame(++pc, begin_pc, registers, locals, op1(call))); ICodeModule *tgt = (*registers)[op2(call)].icm; locals = new JSArray(tgt->itsMaxVariable + 1); registers = new JSArray(tgt->itsMaxRegister + 1); RegisterList args = op3(call); for (RegisterList::iterator r = args.begin(); r != args.end(); r++) (*locals)[r - args.begin()] = (*previousRegisters)[(*r)]; begin_pc = pc = tgt->its_iCode->begin(); } continue; case RETURN: { Return* ret = static_cast(instruction); JSValue result; if (op1(ret) != NotARegister) result = (*registers)[op1(ret)]; if (stack.empty()) return result; Frame *fr = stack.back(); stack.pop_back(); registers = fr->itsRegisters; locals = fr->itsVariables; (*registers)[fr->itsResult] = result; pc = fr->itsReturnPC; begin_pc = fr->itsBasePC; } continue; case MOVE_TO: { Move* mov = static_cast(instruction); (*registers)[dst(mov)] = (*registers)[src1(mov)]; } break; case LOAD_NAME: { LoadName* ln = static_cast(instruction); (*registers)[dst(ln)] = globals[*src1(ln)]; } break; case SAVE_NAME: { SaveName* sn = static_cast(instruction); globals[*dst(sn)] = (*registers)[src1(sn)]; } break; case NEW_OBJECT: { NewObject* no = static_cast(instruction); (*registers)[dst(no)].object = new JSObject(); } break; case NEW_ARRAY: { NewArray* na = static_cast(instruction); (*registers)[dst(na)].array = new JSArray(); } break; case GET_PROP: { GetProp* gp = static_cast(instruction); JSObject* object = (*registers)[src1(gp)].object; (*registers)[dst(gp)] = (*object)[*src2(gp)]; } break; case SET_PROP: { SetProp* sp = static_cast(instruction); JSObject* object = (*registers)[dst(sp)].object; (*object)[*src1(sp)] = (*registers)[src2(sp)]; } break; case GET_ELEMENT: { GetElement* ge = static_cast(instruction); JSArray* array = (*registers)[src1(ge)].array; (*registers)[dst(ge)] = (*array)[(*registers)[src2(ge)]]; } break; case SET_ELEMENT: { SetElement* se = static_cast(instruction); JSArray* array = (*registers)[dst(se)].array; (*array)[(*registers)[src1(se)]] = (*registers)[src2(se)]; } break; case LOAD_IMMEDIATE: { LoadImmediate* li = static_cast(instruction); (*registers)[dst(li)] = JSValue(src1(li)); } break; case LOAD_VAR: { LoadVar* lv = static_cast(instruction); (*registers)[dst(lv)] = (*locals)[src1(lv)]; } break; case SAVE_VAR: { SaveVar* sv = static_cast(instruction); (*locals)[dst(sv)] = (*registers)[src1(sv)]; } break; case BRANCH: { ResolvedBranch* bra = static_cast(instruction); pc = begin_pc + dst(bra); continue; } break; case BRANCH_LT: { ResolvedBranchCond* bc = static_cast(instruction); if ((*registers)[src1(bc)].i32 < 0) { pc = begin_pc + dst(bc); continue; } } break; case BRANCH_LE: { ResolvedBranchCond* bc = static_cast(instruction); if ((*registers)[src1(bc)].i32 <= 0) { pc = begin_pc + dst(bc); continue; } } break; case BRANCH_EQ: { ResolvedBranchCond* bc = static_cast(instruction); if ((*registers)[src1(bc)].i32 == 0) { pc = begin_pc + dst(bc); continue; } } break; case BRANCH_NE: { ResolvedBranchCond* bc = static_cast(instruction); if ((*registers)[src1(bc)].i32 != 0) { pc = begin_pc + dst(bc); continue; } } break; case BRANCH_GE: { ResolvedBranchCond* bc = static_cast(instruction); if ((*registers)[src1(bc)].i32 >= 0) { pc = begin_pc + dst(bc); continue; } } break; case BRANCH_GT: { ResolvedBranchCond* bc = static_cast(instruction); if ((*registers)[src1(bc)].i32 > 0) { pc = begin_pc + dst(bc); continue; } } break; case ADD: { // could get clever here with Functional forms. Arithmetic* add = static_cast(instruction); (*registers)[dst(add)] = JSValue((*registers)[src1(add)].f64 + (*registers)[src2(add)].f64); } break; case SUBTRACT: { Arithmetic* sub = static_cast(instruction); (*registers)[dst(sub)] = JSValue((*registers)[src1(sub)].f64 - (*registers)[src2(sub)].f64); } break; case MULTIPLY: { Arithmetic* mul = static_cast(instruction); (*registers)[dst(mul)] = JSValue((*registers)[src1(mul)].f64 * (*registers)[src2(mul)].f64); } break; case DIVIDE: { Arithmetic* div = static_cast(instruction); (*registers)[dst(div)] = JSValue((*registers)[src1(div)].f64 / (*registers)[src2(div)].f64); } break; case COMPARE_LT: case COMPARE_LE: case COMPARE_EQ: case COMPARE_NE: case COMPARE_GT: case COMPARE_GE: { Arithmetic* cmp = static_cast(instruction); float64 diff = ((*registers)[src1(cmp)].f64 - (*registers)[src2(cmp)].f64); (*registers)[dst(cmp)].i32 = (diff == 0.0 ? 0 : (diff > 0.0 ? 1 : -1)); } break; case NOT: { Move* nt = static_cast(instruction); (*registers)[dst(nt)].i32 = !(*registers)[src1(nt)].i32; } break; default: NOT_REACHED("bad opcode"); break; } // increment the program counter. ++pc; } } }