// -*- Mode: C++; tab-width: 4; indent-tabs-mode: nil; c-basic-offset: 4 -*- // // The contents of this file are subject to the Netscape Public // License Version 1.1 (the "License"); you may not use this file // except in compliance with the License. You may obtain a copy of // the License at http://www.mozilla.org/NPL/ // // Software distributed under the License is distributed on an "AS // IS" basis, WITHOUT WARRANTY OF ANY KIND, either express oqr // implied. See the License for the specific language governing // rights and limitations under the License. // // The Original Code is the JavaScript 2 Prototype. // // The Initial Developer of the Original Code is Netscape // Communications Corporation. Portions created by Netscape are // Copyright (C) 1998 Netscape Communications Corporation. All // Rights Reserved. #include "interpreter.h" #include "world.h" #include namespace JavaScript { using std::map; using std::less; using std::pair; /** * Private representation of a JavaScript object. * This will change over time, so it is treated as an opaque * type everywhere else but here. */ #if defined(XP_MAC) // copied from default template parameters in map. typedef gc_allocator > gc_map_allocator; #elif defined(XP_UNIX) // FIXME: in libg++, they assume the map's allocator is a byte allocator, // which is wrapped in a simple_allocator. this is crap. typedef char _Char[1]; typedef gc_allocator<_Char> gc_map_allocator; #elif defined(_WIN32) // FIXME: MSVC++'s notion. this is why we had to add _Charalloc(). typedef gc_allocator gc_map_allocator; #endif class JSObject : public map, gc_map_allocator> { public: void* operator new(size_t) { return alloc.allocate(1, 0); } void operator delete(void* /* ptr */) {} private: static gc_allocator alloc; }; /** * Private representation of a JavaScript array. */ class JSArray : public JSObject { public: void* operator new(size_t) { return alloc.allocate(1, 0); } JSArray() : elements(1) {} uint32 length() { return elements.size(); } JSValue& operator[](const JSValue& index) { // for now, we can only handle f64 index values. uint32 n = (uint32)index.f64; // obviously, a sparse representation might be better. uint32 size = elements.size(); if (n >= size) resize(n, size); return elements[n]; } private: void resize(uint32 n, uint32 size) { do { size *= 2; } while (n >= size); elements.resize(size); } private: JSValues elements; static gc_allocator alloc; }; // static allocator (required when gc_allocator is allocator. gc_allocator JSObject::alloc; gc_allocator JSArray::alloc; // operand access macros. #define op1(i) (i->itsOperand1) #define op2(i) (i->itsOperand2) #define op3(i) (i->itsOperand3) // mnemonic names for operands. #define dst(i) op1(i) #define src1(i) op2(i) #define src2(i) op3(i) JSValue interpret(ICodeModule *iCode, const JSValues& args) { // fake global variables object. static JSObject globals; JSValue result; JSValues frame(args); JSValues registers(iCode->itsMaxRegister + 1); // ensure that frame is large enough. uint32 frameSize = iCode->itsMaxVariable + 1; if (frameSize > frame.size()) frame.resize(frameSize); InstructionIterator begin_pc = iCode->its_iCode->begin(); InstructionIterator end_pc = iCode->its_iCode->end(); InstructionIterator pc = begin_pc; while (pc != end_pc) { Instruction* instruction = *pc; switch (instruction->opcode()) { case MOVE_TO: { Move* mov = static_cast(instruction); registers[dst(mov)] = registers[src1(mov)]; } break; case LOAD_NAME: { LoadName* ln = static_cast(instruction); registers[dst(ln)] = globals[*src1(ln)]; } break; case SAVE_NAME: { SaveName* sn = static_cast(instruction); globals[*dst(sn)] = registers[src1(sn)]; } break; case NEW_OBJECT: { NewObject* no = static_cast(instruction); registers[dst(no)].object = new JSObject(); } break; case NEW_ARRAY: { NewArray* na = static_cast(instruction); registers[dst(na)].array = new JSArray(); } break; case GET_PROP: { GetProp* gp = static_cast(instruction); JSObject* object = registers[src1(gp)].object; registers[dst(gp)] = (*object)[*src2(gp)]; } break; case SET_PROP: { SetProp* sp = static_cast(instruction); JSObject* object = registers[dst(sp)].object; (*object)[*src1(sp)] = registers[src2(sp)]; } break; case GET_ELEMENT: { GetElement* ge = static_cast(instruction); JSArray* array = registers[src1(ge)].array; registers[dst(ge)] = (*array)[registers[src2(ge)]]; } break; case SET_ELEMENT: { SetElement* se = static_cast(instruction); JSArray* array = registers[dst(se)].array; (*array)[registers[src1(se)]] = registers[src2(se)]; } break; case LOAD_IMMEDIATE: { LoadImmediate* li = static_cast(instruction); registers[dst(li)] = JSValue(src1(li)); } break; case LOAD_VAR: { LoadVar* lv = static_cast(instruction); registers[dst(lv)] = frame[src1(lv)]; } break; case SAVE_VAR: { SaveVar* sv = static_cast(instruction); frame[dst(sv)] = registers[src1(sv)]; } break; case BRANCH: { ResolvedBranch* bra = static_cast(instruction); pc = begin_pc + dst(bra); continue; } break; case BRANCH_LT: { ResolvedBranchCond* bc = static_cast(instruction); if (registers[src1(bc)].i32 < 0) { pc = begin_pc + dst(bc); continue; } } break; case BRANCH_LE: { ResolvedBranchCond* bc = static_cast(instruction); if (registers[src1(bc)].i32 <= 0) { pc = begin_pc + dst(bc); continue; } } break; case BRANCH_EQ: { ResolvedBranchCond* bc = static_cast(instruction); if (registers[src1(bc)].i32 == 0) { pc = begin_pc + dst(bc); continue; } } break; case BRANCH_NE: { ResolvedBranchCond* bc = static_cast(instruction); if (registers[src1(bc)].i32 != 0) { pc = begin_pc + dst(bc); continue; } } break; case BRANCH_GE: { ResolvedBranchCond* bc = static_cast(instruction); if (registers[src1(bc)].i32 >= 0) { pc = begin_pc + dst(bc); continue; } } break; case BRANCH_GT: { ResolvedBranchCond* bc = static_cast(instruction); if (registers[src1(bc)].i32 > 0) { pc = begin_pc + dst(bc); continue; } } break; case ADD: { // could get clever here with Functional forms. Arithmetic* add = static_cast(instruction); registers[dst(add)] = JSValue(registers[src1(add)].f64 + registers[src2(add)].f64); } break; case SUBTRACT: { Arithmetic* sub = static_cast(instruction); registers[dst(sub)] = JSValue(registers[src1(sub)].f64 - registers[src2(sub)].f64); } break; case MULTIPLY: { Arithmetic* mul = static_cast(instruction); registers[dst(mul)] = JSValue(registers[src1(mul)].f64 * registers[src2(mul)].f64); } break; case DIVIDE: { Arithmetic* div = static_cast(instruction); registers[dst(div)] = JSValue(registers[src1(div)].f64 / registers[src2(div)].f64); } break; case COMPARE_LT: case COMPARE_LE: case COMPARE_EQ: case COMPARE_NE: case COMPARE_GT: case COMPARE_GE: { Arithmetic* cmp = static_cast(instruction); float64 diff = (registers[src1(cmp)].f64 - registers[src2(cmp)].f64); registers[dst(cmp)].i32 = (diff == 0.0 ? 0 : (diff > 0.0 ? 1 : -1)); } break; case NOT: { Move* nt = static_cast(instruction); registers[dst(nt)].i32 = !registers[src1(nt)].i32; } break; case RETURN: { Return* ret = static_cast(instruction); result = registers[op1(ret)]; return result; } break; default: break; } // increment the program counter. ++pc; } return result; } }