/* ***** BEGIN LICENSE BLOCK *****
* Version: MPL 1.1/GPL 2.0/LGPL 2.1
*
* The contents of this file are subject to the Mozilla Public License Version
* 1.1 (the "License"); you may not use this file except in compliance with
* the License. You may obtain a copy of the License at
* http://www.mozilla.org/MPL/
*
* Software distributed under the License is distributed on an "AS IS" basis,
* WITHOUT WARRANTY OF ANY KIND, either express or implied. See the License
* for the specific language governing rights and limitations under the
* License.
*
* The Original Code is [Open Source Virtual Machine.].
*
* The Initial Developer of the Original Code is
* Adobe System Incorporated.
* Portions created by the Initial Developer are Copyright (C) 1993-2006
* the Initial Developer. All Rights Reserved.
*
* Contributor(s):
* Adobe AS3 Team
*
* Alternatively, the contents of this file may be used under the terms of
* either the GNU General Public License Version 2 or later (the "GPL"), or
* the GNU Lesser General Public License Version 2.1 or later (the "LGPL"),
* in which case the provisions of the GPL or the LGPL are applicable instead
* of those above. If you wish to allow use of your version of this file only
* under the terms of either the GPL or the LGPL, and not to allow others to
* use your version of this file under the terms of the MPL, indicate your
* decision by deleting the provisions above and replace them with the notice
* and other provisions required by the GPL or the LGPL. If you do not delete
* the provisions above, a recipient may use your version of this file under
* the terms of any one of the MPL, the GPL or the LGPL.
*
* ***** END LICENSE BLOCK ***** */
#include "avmplus.h"
using namespace MMgc;
// WARNING:
// WARNING:
// WARNING:
// Never do "MMgc::GC::GetGC(this)" in the HashTable object. It is dynamically
// placed at the end of a ScriptObject following traits data which can extend
// greater than 4k off the starting pointer. This will cause GetGC(this) to fail.
// WARNING:
// WARNING:
// WARNING:
namespace avmplus
{
void Hashtable::initialize(GC *gc, int capacity)
{
capacity = MathUtils::nextPowerOfTwo(capacity);
setNumAtoms(capacity*2);
AvmAssert(getNumAtoms());
MMGC_MEM_TYPE(this);
setAtoms((Atom *) gc->Alloc (sizeof(Atom) * getNumAtoms(), GC::kContainsPointers|GC::kZero));
flags = 0;
}
Hashtable::~Hashtable()
{
destroy();
}
void Hashtable::destroy()
{
if(atoms) {
GC *gc = GC::GetGC(atoms);
#ifdef MMGC_DRC
AvmCore::decrementAtomRegion(atoms, getNumAtoms());
#endif
gc->Free (atoms);
}
atoms = NULL;
setNumAtoms(0);
size = 0;
flags = 0;
}
void Hashtable::setAtoms(Atom *newAtoms)
{
GC *gc = GC::GetGC(newAtoms);
gc->writeBarrier(gc->FindBeginning(this), &atoms, newAtoms);
}
void Hashtable::put(Atom name, Atom value)
{
int i = find(name, atoms, getNumAtoms());
GC *gc = GC::GetGC(atoms);
if ((atoms[i] & ~dontEnumMask()) != name) {
AvmAssert(!isFull());
//atoms[i] = name;
WBATOM(gc, atoms, &atoms[i], name);
size++;
}
//atoms[i+1] = value;
WBATOM( gc, atoms, &atoms[i+1], value);
}
Atom Hashtable::get(Atom name) const
{
int i;
return atoms[i = find(name, atoms, getNumAtoms())] == name ? atoms[i+1] : undefinedAtom;
}
int Hashtable::find(Stringp x, const Atom *t, unsigned tLen) const
{
AvmAssert(x != NULL);
return find(x->atom(), t, tLen);
}
int Hashtable::find(Atom x, const Atom *t, unsigned m) const
{
int mask = ~dontEnumMask();
x &= mask;
#if 0 // debug code to print out the strings we're searching for
static int debug =0;
if (debug && AvmCore::isString(x))
{
Stringp s = AvmCore::atomToString(x);
AvmDebugMsg (s->c_str(), false);
AvmDebugMsg ("\n", false);
}
#endif
int bitmask = (m - 1) & ~0x1;
AvmAssert(x != EMPTY && x != DELETED);
// this is a quadratic probe but we only hit even numbered slots since those hold keys.
int n = 7 << 1;
#ifdef _DEBUG
unsigned loopCount = 0;
#endif
// Note: Mask off MSB to avoid negative indices. Mask off bottom
// 3 bits because it doesn't contribute to hash. Double it
// because names, values stored adjacently.
unsigned i = ((0x7FFFFFF8 & x)>>2) & bitmask;
Atom k;
while ((k=t[i]&mask) != x && k != EMPTY)
{
i = (i + (n += 2)) & bitmask; // quadratic probe
AvmAssert(loopCount++ < m); // don't scan forever
}
AvmAssert(i <= ((m-1)&~0x1));
return i;
}
Atom Hashtable::remove(Atom name)
{
int i = find(name, atoms, getNumAtoms());
Atom val = undefinedAtom;
if ((atoms[i]&~dontEnumMask()) == name)
{
val = atoms[i+1];
atoms[i] = DELETED;
atoms[i+1] = DELETED;
setHasDeletedItems(true);
}
return val;
}
int Hashtable::rehash(Atom *oldAtoms, int oldlen, Atom *newAtoms, int newlen)
{
int newSize = 0;
for (int i=0, n=oldlen; i < n; i += 2)
{
Atom oldAtom;
if ((oldAtom=oldAtoms[i]) != EMPTY && oldAtom != DELETED)
{
// inlined & simplified version of put()
int j = find(oldAtom, newAtoms, newlen);
newAtoms[j] = oldAtom;
newAtoms[j+1] = oldAtoms[i+1];
newSize++;
}
}
return newSize;
}
/**
* load factor is 0.75 so we're full if size >= M*0.75
* where M = atoms.length/2
* size >= M*3/4
* 4*size >= 3*M
* 4*size >= 3*atoms.length/2
* 8*size >= 3*atoms.length
* size<<3 >= 3*atoms.length
*/
/**
* load factor is 0.9 so we're full if size >= M*0.9
* where M = atoms.length/2
* size >= M*9/10
* 10*size >= 9*M
* 10*size >= 9*atoms.length/2
* 20*size >= 9*atoms.length
*/
bool Hashtable::isFull() const
{
// This seems to work very well and the Intel compiler converts both the multiplies
// into shift+add operations.
return (5*(getSize()+1)) >= 2*getNumAtoms(); // 0.80
#if 0
//return ((size<<3)+1) >= 3*getNumAtoms(); // 0.75
//return ((40*size)+1) >= 19*getNumAtoms(); // 0.95
//return ((40*size)+1) >= 18*getNumAtoms(); // 0.90
//return ((40*size)+1) >= 17*getNumAtoms(); // 0.85
//return ((40*size)+1) >= 15*getNumAtoms(); // 0.75
//Edwins suggestion - if (size > max - max>>N)) grow (N = 5, 4, 3, 2)
//#define SHIFTFACTOR 4
//NOT CORRECT
//return ( ( size << SHIFTFACTOR ) + size > (getNumAtoms() << (SHIFTFACTOR-1)) );
#endif
}
void Hashtable::add(Atom name, Atom value)
{
if (isFull())
{
grow();
}
put(name, value);
}
void Hashtable::grow()
{
// grow the table by 2N+1
// new = 2*old+1 ; old == o.atoms.length/2
// = 2*(o.atoms.length/2)+1
// = o.atoms.length + 1
// If we have deleted slots, we don't grow our HT because our rehash will clear
// out spots for us.
int capacity = hasDeletedItems() ? getNumAtoms() : MathUtils::nextPowerOfTwo(getNumAtoms()+1);
GC* gc = GC::GetGC(atoms);
MMGC_MEM_TYPE(this);
Atom *newAtoms = (Atom *) gc->Calloc(capacity, sizeof(Atom), GC::kContainsPointers|GC::kZero);
size = rehash(atoms, getNumAtoms(), newAtoms, capacity);
gc->Free (atoms);
setAtoms(newAtoms);
setNumAtoms(capacity);
setHasDeletedItems(false);
return;
}
Atom Hashtable::keyAt(int index)
{
return atoms[(index-1)<<1];
}
Atom Hashtable::valueAt(int index)
{
return atoms[((index-1)<<1)+1];
}
/* void Hashtable::removeAt(int index)
{
int i = (index-1)<<1;
atoms[i] = DELETED;
atoms[i+1] = DELETED;
setHasDeletedItems(true);
}*/
// call this method using the previous value returned
// by this method starting with 0, until 0 is returned.
int Hashtable::next(int index)
{
if (index != 0) {
index = index<<1;
}
// Advance to first non-empty slot.
int mask = dontEnumMask();
int numAtoms = getNumAtoms();
while (index < numAtoms) {
if ((atoms[index]&7) != EMPTY && (atoms[index]&7) != DELETED && (atoms[index]&mask) != kDontEnumBit) {
return (index>>1)+1;
}
index += 2;
}
return 0;
}
bool Hashtable::getAtomPropertyIsEnumerable(Atom name) const
{
if (hasDontEnumSupport())
{
int i = find(name, atoms, getNumAtoms());
if ((atoms[i]&~kDontEnumBit) == name)
{
return (atoms[i]&kDontEnumBit) == 0;
}
else
{
return false;
}
}
else
{
return contains(name);
}
}
void Hashtable::setAtomPropertyIsEnumerable(Atom name, bool enumerable)
{
if (hasDontEnumSupport())
{
int i = find(name, atoms, getNumAtoms());
if ((atoms[i]&~kDontEnumBit) == name)
{
atoms[i] = (atoms[i]&~kDontEnumBit) | (enumerable ? 0 : kDontEnumBit);
}
}
}
Atom WeakKeyHashtable::getKey(Atom key)
{
// this gets a weak ref number, ie double keys, okay I guess
if(AvmCore::isPointer(key)) {
GCWeakRef *weakRef = ((GCObject*)(key&~7))->GetWeakRef();
key = AvmCore::gcObjectToAtom(weakRef);
}
return key;
}
void WeakKeyHashtable::add(Atom key, Atom value)
{
if(isFull()) {
prune();
grow();
}
put(getKey(key), value);
}
void WeakKeyHashtable::prune()
{
for(int i=0, n=getNumAtoms(); iget() == NULL) {
// inlined delete
atoms[i] = DELETED;
atoms[i+1] = DELETED;
setHasDeletedItems(true);
}
}
}
}
Atom WeakValueHashtable::getValue(Atom key, Atom value)
{
if(AvmCore::isGCObject(value)) {
GCWeakRef *wr = (GCWeakRef*)(value&~7);
if(wr->get() != NULL) {
// note wr could be a pointer to a double, that's what this is for
if(GC::GetGC(atoms)->IsRCObject(wr->get())) {
value = ((AvmPlusScriptableObject*)wr->get())->toAtom();
} else {
AvmAssert(false);
}
} else {
remove(key);
value = undefinedAtom;
}
}
return value;
}
void WeakValueHashtable::add(Atom key, Atom value)
{
if(isFull()) {
prune();
grow();
}
if(AvmCore::isPointer(value)) {
GCWeakRef* wf = ((GCObject*)(value&~7))->GetWeakRef();
value = AvmCore::gcObjectToAtom(wf);
}
put(key, value);
}
void WeakValueHashtable::prune()
{
for(int i=0, n=getNumAtoms(); iget() == NULL) {
// inlined delete
atoms[i] = DELETED;
atoms[i+1] = DELETED;
setHasDeletedItems(true);
}
}
}
}
}